📄 hspm.m
字号:
function [h,xs,w] = hspm(data,nyy,t0,t1)
%
% [h,xs,w] = hspm(data,nyy,t0,t1):
% Function to generate an HHT spectrum of data(n,k)
% in time-period space, where
% n specifies the length of time series, and
% k is the number of IMF components.
%
% Input-
% data - 2-D matrix data(n,k) of IMF components
% nyy - the period resolution
% t0 - the start time
% t1 - the end time
% Output-
% h - 2-D matrix of the HHT spectrum, where
% 1st dimension specifies the number of periods,
% 2nd dimension specifies the number of time values
% xs - vector that specifies the time-axis values
% w - vector that specifies the period-axis values
%
% Z. Shen (JHU) July 2, 1995 Initial
% D. Xiang (JHU) March 26, 2002 Modified
% J. Marshak (NASA GSFC) Jan. 28, 2004 Edited
%
% Notes-
% MATLAB library function 'hilbert()' is used to calculate the
% Hilbert transform.
% Example, [h,xs,w] = hspm(lod78_p',200,1,3224).
% Functions 'contour()' or img() can be used to view the spectrum,
% for example contour(xs,w,h) or img(xs,w,h).
%
% Temporary remarks-
% Changed the function name,
% was 'hsp_m()' for the code named as 'hspm.m'.
%----- Get dimensions (number of time points and components)
[npt,knb] = size(data);
%%----- Get time interval
dt=(t1-t0)/(npt-1);
%-----Apply Hilbert Transform
data=hilbert(data);
a=abs(data);
omg=abs(diff(data)./data(1:npt-1,:)/(2*pi*dt));
%omg=abs(diff(unwrap(angle(data))))/(2*pi*dt);
%%----- Add the last row to omg to preserve the dimension
omg=[omg;omg(npt-1,:)];
clear data
tmx=1/min(min(omg));
tmn=1/max(max(omg));
dtt=tmx-tmn;
omg=1../omg;
clear p;
%----- Construct the ploting matrix
h1=zeros(npt,nyy+1);
p=round(nyy*(omg-tmn)/dtt)+1;
for j1=1:npt
for i1=1:knb
ii1=p(j1,i1);
h1(j1,ii1)=h1(j1,ii1)+a(j1,i1);
end
end
%---- Define the results
w=linspace(tmn,tmx,nyy+1)';
xs=linspace(t0,t1,npt)';
h=flipud(rot90(abs(h1)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -