📄 nspabav.m
字号:
function [h,xs,w] = nspabav(data,nyy,minw,maxw,t0,t1,m)
%
% [h,xs,w] = nspabav(data,nyy,minw,maxw,t0,t1,m):
%
% Function to generate a smoothed HHT spectrum of data(n,k)
% in time-frequency space, where
% n specifies the length of time series, and
% k is the number of IMF components.
% The frequency-axis range is prefixed.
%
% Input-
% data - 2-D matrix data(n,k) of IMF components
% nyy - the frequency resolution
% minw - the minimum frequency
% maxw - the maximum frequency
% t0 - the start time
% t1 - the end time
% m - time scale averaging number
% Output-
% h - 2-D matrix of the HHT spectrum, where
% 1st dimension specifies the number of frequencies,
% 2nd dimension specifies the number of time values
% xs - vector that specifies the time-axis values
% w - vector that specifies the frequency-axis values
%
% Z. Shen (JHU) July 2, 1995 Initial
% J. Marshak (NASA GSFC) Jan. 28, 2004 Edited
%
% Notes-
% MATLAB library function 'hilbert()' is used to calculate the
% Hilbert transform.
% Example, [h,xs,w] = nspabav(lod78_p',200,0,0.12,1,3224,3),
% here m=3 means the time-axis will be 3 to 1.
% Functions 'contour()' or img() can be used to view the spectrum,
% for example contour(xs,w,h) or img(xs,w,h).
%
% Temporary remarks-
% Changed the function name,
% was 'nspmab()' for the code named as 'nspmab.m'.
% 'nspabav.m' is similar to 'nspab.m': the latter has m=3 and
% does 3:1 averaging of time scale.
% Question : Do we really need this option?
%
%----- Get dimensions (number of time points and components)
[npt,knb] = size(data);
%----- Get time interval
dt=(t1-t0)/(npt-1);
%----- Apply Hilbert Transform
data=hilbert(data);
a=abs(data);
omg=abs(diff(unwrap(angle(data))))/(2*pi*dt);
%----- Smooth amplitude and frequency
filtr=fir1(8,.1);
for i=1:knb
a(:,i)=filtfilt(filtr,1,a(:,i));
omg(:,i)=filtfilt(filtr,1,omg(:,i));
end
for i=1:knb
a(:,i)=filtfilt(filtr,1,a(:,i));
omg(:,i)=filtfilt(filtr,1,omg(:,i));
end
%----- Limit frequency and amplitude
for i=1:knb
for i1=1:npt-1
if omg(i1,i) >=maxw,
omg(i1,i)=maxw;
a(i1,i)=0;
elseif omg(i1,i)<=minw,
omg(i1,i)=minw;
a(i1,i)=0;
else
end
end
end
clear filtr data
%----- Get local frequency
dw=maxw - minw;
wmx=maxw;
wmn=minw;
%----- Construct the ploting matrix
clear p;
h1=zeros(npt-1,nyy+1);
p=round(nyy*(omg-wmn)/dw)+1;
for j1=1:npt-1
for i1=1:knb
ii1=p(j1,i1);
h1(j1,ii1)=h1(j1,ii1)+a(j1,i1);
end
end
%----- Do m-point to 1-point averaging
[nx,ny]=size(h1);
n1=fix(nx/m);
h=zeros(n1,ny);
for i1=1:n1
for j1=1:m
h(i1,:)=h(i1,:)+h1(m*i1-(j1-1),:);
end
h(i1,:)=h(i1,:)/m;
end
clear h1;
%----- Do m-points smoothing in x-direction
fltr=1./m*ones(m,1);
for j1=1:ny
h(:,j1)=filtfilt(fltr,1,h(:,j1));
end
clear fltr;
%----- Define the results
w=linspace(wmn,wmx,ny-1)';
xs=linspace(t0,t1,n1)';
h=flipud(rot90(h));
h=h(1:ny-1,:);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -