📄 minnorm.m
字号:
function w=minnorm(y,n,m)
%
% The Root Min-Norm frequency estimator.
%
% w=minnorm(y,n,m);
%
% y -> the data vector
% n -> the model order
% m -> the order of the covariance matrix in (4.5.14)
% w <- the frequency estimates
%
% Copyright 1996 by R. Moses
y=y(:);
N=length(y); % data length
% compute the sample covariance matrix
R=zeros(m,m);
for i = m : N,
R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N;
end
% to use the forward-backward approach, uncomment the next line
% R=(R+fliplr(eye(m))*R.'*fliplr(eye(m)))/2;
% get the eigendecomposition of R; use svd because it sorts eigenvalues
[U,D,V]=svd(R);
S=U(:,1:n);
alpha = S(1,:)';
Sbar = S(2:m,:);
if norm(alpha) ~=1,
g = - Sbar * alpha / (1-alpha'*alpha);
else,
error('The min-norm solution does not exist');
end
% find the n roots of the a polynomial that are nearest the unit circle,
ra= conj(roots([1;g]));
% pick the n roots that are closest to the unit circle
[dumm,I]=sort(abs(abs(ra)-1));
w=angle(ra(I(1:n)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -