📄 trirow.h
字号:
// tridiagonal matrix stored by rows
#ifndef TriByRows_
#define TriByRows_
#include <stdlib.h>
#include <iostream.h>
#include "xcept.h"
template<class T>
class TriByRows {
friend ostream& operator<<
(ostream&, const TriByRows<T>&);
friend istream& operator>>
(istream&, TriByRows<T>&);
public:
TriByRows(int size = 10)
{n = size; t = new T [3*n-2];}
~TriByRows() {delete [] t;}
TriByRows<T>& Store
(const T& x, int i, int j);
T Retrieve(int i, int j) const;
TriByRows(const TriByRows<T>& x);
// copy constructor
TriByRows<T>& operator=(const TriByRows<T>& x);
TriByRows<T> operator+() const; // unary +
TriByRows<T> operator+(const TriByRows<T>& x) const;
TriByRows<T> operator-() const; // unary minus
TriByRows<T> operator-(const TriByRows<T>& x) const;
TriByRows<T>& operator+=(const T& x);
TriByRows<T> Transpose();
private:
int n; // matrix dimension
T *t; // 1D array for tridiagonal
};
template<class T>
TriByRows<T>& TriByRows<T>::
Store(const T& x, int i, int j)
{// Store x as T(i,j)
if ( i < 1 || j < 1 || i > n || j > n)
throw OutOfBounds();
switch (i - j) {
case 1: case 0: case -1: // in tridiagonal
t[2 * i + j - 3] = x;
break;
default: if(x != 0) throw MustBeZero();
}
return *this;
}
template <class T>
T TriByRows<T>::Retrieve(int i, int j) const
{// Retrieve T(i,j)
if ( i < 1 || j < 1 || i > n || j > n)
throw OutOfBounds();
switch (i - j) {
case 1: case 0: case -1: // in tridiagonal
return t[2 * i + j - 3];
default: return 0;
}
}
template<class T>
TriByRows<T>::TriByRows(const TriByRows<T>& x)
{// Copy constructor for tridiagonal matrices.
n = x.n;
t = new T[3 * n - 2]; // get space
for (int i = 0; i < 3 * n - 2; i++) // copy elements
t[i] = x.t[i];
}
template<class T>
TriByRows<T>& TriByRows<T>::operator=(const TriByRows<T>& x)
{// Overload assignment operator.
if (this != &x) {// not self-assignment
n = x.n;
delete [] t; // free old space
t = new T[3 * n - 2]; // get right amount
for (int i = 0; i < 3 * n - 2; i++) // copy elements
t[i] = x.t[i];
}
return *this;
}
template<class T>
TriByRows<T> TriByRows<T>::
operator+(const TriByRows<T>& x) const
{// Return w = (*this) + x.
if (n != x.n) throw SizeMismatch();
// create result array w
TriByRows<T> w(n);
for (int i = 0; i < 3 * n - 2; i++)
w.t[i] = t[i] + x.t[i];
return w;
}
template<class T>
TriByRows<T> TriByRows<T>::
operator-(const TriByRows<T>& x) const
{// Return w = (*this) - x.
if (n != x.n) throw SizeMismatch();
// create result array w
TriByRows<T> w(n);
for (int i = 0; i < 3 * n - 2; i++)
w.t[i] = t[i] - x.t[i];
return w;
}
template<class T>
TriByRows<T> TriByRows<T>::operator-() const
{// Return w = -(*this).
// create result array w
TriByRows<T> w(n);
for (int i = 0; i < 3 * n - 2; i++)
w.t[i] = -t[i];
return w;
}
template<class T>
TriByRows<T>& TriByRows<T>::operator+=(const T& x)
{// Add x to each element of (*this).
for (int i = 0; i < 3 * n - 2; i++)
t[i] += x;
return *this;
}
template<class T>
TriByRows<T> TriByRows<T>::
Transpose()
{// Compute the transpose of *this.
// create result array w
TriByRows<T> w(n);
// copy lower diagonal of *this to
// upper diagonal of w and upper of
// *this to lower of w
for (int i = 1; i < 3 * n - 2; i += 3) {
w.t[i] = t[i + 1];
w.t[i + 1] = t[i];
}
// copy main diagonal of *this to
// main diagonal of w
for (int i = 0; i < 3 * n - 2; i += 3)
w.t[i] = t[i];
return w;
}
template<class T>
ostream& operator<<(ostream& out,
const TriByRows<T>& x)
{// Put the elements of x into the stream out.
out << "Lower diagonal is" << endl;
for (int i = 2; i < 3 * x.n - 2; i += 3)
out << x.t[i] << " ";
out << endl;
out << "Main diagonal is" << endl;
for (int i = 0; i < 3 * x.n - 2; i += 3)
out << x.t[i] << " ";
out << endl;
out << "Upper diagonal is" << endl;
for (int i = 1; i < 3 * x.n - 2; i += 3)
out << x.t[i] << " ";
out << endl;
return out;
}
// overload >>
template<class T>
istream& operator>>(istream& in,
TriByRows<T>& x)
{// Input the tridiagonal matrix.
cout << "Enter number of rows"
<< endl;
in >> x.n;
if (x.n < 0) throw BadInput();
// input terms
cout << "Enter lower diagonal" << endl;
for (int i = 2; i < 3 * x.n - 2; i += 3)
in >> x.t[i];
cout << "Enter main diagonal" << endl;
for (int i = 0; i < 3 * x.n - 2; i += 3)
in >> x.t[i];
cout << "Enter upper diagonal" << endl;
for (int i = 1; i < 3 * x.n - 2; i += 3)
in >> x.t[i];
return in;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -