📄 lwdgph2.h
字号:
// linked adjacency list representation of a weighted directed graph
// initial version
// overloading of <<
// overloading of >> done in lbase2.h
#ifndef LinkedWDigraph_
#define LinkedWDigraph_
#include <iostream.h>
#include "lbase2.h"
#include "gnode.h"
#include "xcept.h"
template<class T>
class LinkedWDigraph :
public LinkedBase<GraphNode<T> > {
public:
LinkedWDigraph(int Vertices = 10)
: LinkedBase<GraphNode<T> > (Vertices) {}
bool Exist(int i, int j) const;
LinkedWDigraph<T>& Add(int i, int j, const T& w);
LinkedWDigraph<T>& Delete(int i, int j);
int InDegree(int i) const;
void Input() {Input(cin);}
void Input(istream& in);
protected:
LinkedWDigraph<T>&
AddNoCheck(int i, int j, const T& w);
};
template<class T>
bool LinkedWDigraph<T>::Exist(int i, int j) const
{// Is edge (i,j) present?
if (i < 1 || i > n) throw OutOfBounds();
GraphNode<T> x;
x.vertex = j;
return h[i].Search(x);
}
template<class T>
LinkedWDigraph<T>& LinkedWDigraph<T>
::Add(int i, int j, const T& w)
{// Add edge (i,j).
if (i < 1 || j < 1 || i > n || j > n || i == j
|| Exist(i, j)) throw BadInput();
return AddNoCheck(i, j, w);
}
template<class T>
LinkedWDigraph<T>& LinkedWDigraph<T>
::AddNoCheck(int i, int j, const T& w)
{// Add (i,j) with no error checks.
GraphNode<T> x;
x.vertex = j; x.weight = w;
h[i].Insert(0,x);
e++;
return *this;
}
template<class T>
LinkedWDigraph<T>& LinkedWDigraph<T>
::Delete(int i, int j)
{// Delete edge (i,j).
if (i < 1 || i > n) throw OutOfBounds();
GraphNode<T> x;
x.vertex = j;
h[i].Delete(x);
e--;
return *this;
}
template<class T>
int LinkedWDigraph<T>::InDegree(int i) const
{// Return indegree of vertex i.
if (i < 1 || i > n) throw OutOfBounds();
int sum = 0;
GraphNode<T> x;
x.vertex = i;
// check all lists for edge (j,i)
for (int j = 1; j <= n; j++)
if (h[j].Search(x)) sum++;
return sum;
}
template <class T>
void LinkedWDigraph<T>::Input(istream& in)
{// Input the adjacency lists.
// first delete the old digraph
delete [] h;
// input new size and create h
cout << "Enter the number of vertices in the digraph" << endl;
cin >> n;
if (n < 0) throw BadInput();
cout << "Enter the number of edges in the digraph" << endl;
int E;
cin >> E;
if (E < 0 || E > n*(n-1)) throw BadInput();
h = new Chain<GraphNode<T> > [n+1];
// now input the edges and add them to the adjacency
// lists
e = 0;
int u, v; // edge end points
T w; // edge weight
for (int i = 1; i <= E; i++) {
cout << "Enter edge " << i << endl;
in >> u >> v >> w;
Add(u,v,w);
}
}
// overload >>
template <class T>
istream& operator>>(istream& in, LinkedWDigraph<T>& x)
{x.Input(in); return in;}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -