📄 chap5_func.m
字号:
%P5-14%Consider a cellular system with hexagonal cells and with a frequency reuse factor %of 7. Consider the forward link transmission where the co-channel interference %resulting only from the 6 co-channels (base stations) in the first tier. The %propagation environment is characterized by the lognormal shadowing as described by %Eqs. (2.4.15)-(2.4.16), with path loss exponent k and the standard deviation . %All the base stations have the same transmitted signal power and the same values for%do and Lp(do) respectively. The required instantaneous signal to co-channel %interference ratio (S/I) is 18 dB.%(a) Assume that the mobile user location is uniformly distributed in the cell with %d > do, find the probability that the instantaneous (S/I) value is below 18 dB (1) %for std = 8dB and k = 2, 2.5, 3, 3.5, and 4, respectively, and (2) for k = 4 and std = %7, 8, and 9 dB, respectively.%(b) Consider the worst case scenario where the mobile user is at the cell boundary,%find the probability that the instantaneous (S/I) value is below 18 dB (1) for %std = 8dB and k = 2, 2.5, 3, 3.5, and 4, respectively, and (2) for k = 4 and std = %7, 8, and 9 dB, respectively.function chap5_func (action)handle = findobj(gcbf, 'Tag', 'Mode');Mode = get(handle,'Value');handle = findobj(gcbf, 'Tag', 'GraphType');GraphType = get(handle, 'Value');handle = findobj(gcbf, 'Tag', 'ReqSI');ReqSI = eval(get(handle, 'String'));switch GraphTypecase 1 std_e = 8;for n=0:4 k(n+1) = 2 + n*0.5; N = 500 + 100 * n; Repeat = 10;R = 5;Lp0 = 0; %dBd0 = 0.5;%kma = sqrt(3)/2*R;bs_x = [0, 1.5*R, 4.5*R, 3*R, -1.5*R, -4.5*R, -3*R];bs_y = [0, 5*a, a, -4*a, -5*a, -a, 4*a];switch Mode case 1 %generate uniformly distributed samples inside the cell. r = R*rand(N); deg = 360*rand(N); case 2 %generate uniformly distributed samples r(1:N) = R; deg(1:N) = 0;endx = r.*cos(deg);y = r.*sin(deg);count = 0;root_3 = sqrt(3);for w = 1:Repeatfor (i = 1:N) temp1 = root_3*(x(i)-R); temp2 = root_3*(x(i)+R); if ( y(i)<= root_3/2*R & y(i)>= -root_3/2*R & y(i) <= -temp1 & y(i) >= -temp2 & y(i) <= temp2 & y(i) >= temp1 & sqrt(y(i)^2 + x(i)^2) > d0) count = count + 1; coor(count, :) = [x(i) y(i)]; endendendtemp = 0;for i = 1:count shadow = std_e*randn(1,7); for j = 1:7 distance(j) = sqrt((coor(i, 1) - bs_x(j))^2 + (coor(i, 2) - bs_y(j))^2); Lpd(j) = Lp0 + 10 * k(n+1) * log (distance(j)/d0)+ shadow(j); endPr = -Lpd;Pi = 0;for j = 2:7 Pi = Pi + 10^(0.1*Pr(j)); endPi_db = 10*log10(Pi); %in dBSIR = Pr(1) - Pi_db;if SIR < ReqSI; temp = temp + 1;endendProb(n+1) = temp/count;endhandle = findobj(gcbf, 'Tag', 'Axes1');semilogy(k, Prob, 'b-');xlabel('Path Loss Exponent k');ylabel('Outage Probability');grid on;case 2k = 4;for n=0:2 std_e(n+1) = 7 + n;N = 750 + 200 * n;Repeat = 10;R = 5;Lp0 = 0; %dBd0 = 0.5;%kma = sqrt(3)/2*R;bs_x = [0, 1.5*R, 4.5*R, 3*R, -1.5*R, -4.5*R, -3*R];bs_y = [0, 5*a, a, -4*a, -5*a, -a, 4*a];switch Mode case 1 %generate uniformly distributed samples inside the cell. r = R*rand(N); deg = 360*rand(N); case 2 %generate uniformly distributed samples r(1:N) = R; deg(1:N) = 0;endx = r.*cos(deg);y = r.*sin(deg);count = 0;root_3 = sqrt(3);for w = 1:Repeatfor (i = 1:N) temp1 = root_3*(x(i)-R); temp2 = root_3*(x(i)+R); if ( y(i)<= root_3/2*R & y(i)>= -root_3/2*R & y(i) <= -temp1 & y(i) >= -temp2 & y(i) <= temp2 & y(i) >= temp1 & sqrt(y(i)^2 + x(i)^2) > d0) count = count + 1; coor(count, :) = [x(i) y(i)]; endendendtemp = 0;for i = 1:count shadow = std_e(n+1)*randn(1,7); for j = 1:7 distance(j) = sqrt((coor(i, 1) - bs_x(j))^2 + (coor(i, 2) - bs_y(j))^2); Lpd(j) = Lp0 + 10 * k * log (distance(j)/d0)+ shadow(j); endPr = -Lpd;Pi = 0;for j = 2:7 Pi = Pi + 10^(0.1*Pr(j)); endPi_db = 10*log10(Pi); %in dBSIR = Pr(1) - Pi_db;if SIR < ReqSI; temp = temp + 1;endendProb(n+1) = temp/count;endhandle = findobj(gcbf, 'Tag', 'Axes1');semilogy(std_e, Prob, 'b-');xlabel('Shadowing Standard Deviation (dB)');ylabel('Outage Probability');grid on;end return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -