📄 matlab.txt
字号:
>> limit(x/abs(x), x, 0, ’left’) ans = -1
>> limit(x/abs(x),x, 0, ’right’) ans = 1
2、导数
格式: diff (f,t,n)
功能: 求函数f 对变量 t的n 阶导数。当n省略时,默认 n=1;当t省略时,默认变量x, 若无x时则查找字母表上最接近字母x 的字母。
例如:求函数f=a*x^2+b*x+c对变量 x的一阶导数, 命令及结果为
>> syms a b c x
>> f=a*x^2+b*x+c;
>> diff(f)
ans=
2*a*x+b
求函数f 对变量b的一阶导数(可看作求偏导), 命令及结果为
>> diff(f,b) ans=x
求函数f 对变量x的二阶导数, 命令及结果为
>> diff(f,2) ans=2*a
3、积分
格式: int(f,t,a,b)
功能: 求函数f 对变量 t从a 到b的定积分. 当a和b省略时求不定积分;当t省略时, 默认变量为(字母表上)最接近字母x的变量。
例如:求函数f=a*x^2+b*x+c对变量x不定积分, 命令及结果为
>> syms a b c x
>> f=a*x^2+b*x+c;
>> int(f)
ans=
1/3*a*x^3+1/2*b*x^2+c*x
求函数f 对变量b不定积分, 命令及结果为
>> int(f,b)
ans=
a*x^2*b+1/2*b^2*x+c*b
求函数f 对变量x 从 1到5的定积分, 命令及结果为
>> int(f,1,5)
ans=
124/3*a+12*b+4*c
4、级数求和
格式: symsum (s,t,a,b)
功能:求表达式s中的符号变量t从第a项到第b项的级数和。
例如: 求级数的前三项的和, 命令及结果为
>> symsum(1/x,1,3) ans=11/6
7.2.3 化简和代换
MATLAB符号运算工具箱中,包括了较多的代数式化简和代换功能,下面仅举出部分常见运算。
simplify 利用各种恒等式化简代数式
expand 将乘积展开为和式
factor 把多项式转换为乘积形式
collect 合并同类项
horner 把多项式转换为嵌套表示形式
例如:进行合并同类项执行
>> syms x
>> collect(3*x^3-0.5*x^3+3*x^2)
ans=
5/2*x^3+3*x^2)
进行因式分解执行
>> factor(3*x^3-0.5*x^3+3*x^2)
ans=
1/2*x^2*(5*x+6)
7.2.4 解方程
1、代数方程
格式:solve (f,t)
功能:对变量t 解方程f=0,t 缺省时默认为x 或最接近字母x 的符号变量。
例如:求解一元二次方程f=a*x^2+b*x+c的实根,
>> syms a b c x
>> f=a*x^2+b*x+c;
>> solve (f,x)
ans=
[1/2/a*(-b+(b^2-4*a*c)^ (1/2))]
[1/2/a*(-b-(b^2-4*a*c)^ (1/2))]
2、微分方程
格式:dsolve(‘s’, ’s1’, ’s2’,…, ’x’)
其中s为方程;s1,s2,……为初始条件,缺省时给出含任意常数c1,c2,……的通解;x为自变量,缺省时默认为t 。
例如:求微分方程的通解
>> dsolve(‘Dy=1+y^2’)
ans=
tan(t+c1)
7.3 优化工具箱及其应用
在工程设计、经济管理和科学研究等诸多领域中,人们常常会遇到这样的问题:如何从一切可能的方案中选择最好、最优的方案,在数学上把这类问题称为最优化问题。这类问题很多,例如当设计一个机械零件时如何在保证强度的前提下使重量最轻
或用量最省(当然偷工减料除外);如何确定参数,使其承载能力最高;在安排生产时,如何在现有的人力、设备的条件下,合理安排生产,使其产品的总产值最高;在确定库存时如何在保证销售量的前提下,使库存成本最小;在物资调配时,如何组织运输使运输费用最少。这些都属于最优化问题所研究的对象。
MATLAB的优化工具箱被放在toolbox目录下的optim子目录中,其中包括有若干个常用的求解函数最优化问题的程序。MATLAB的优化工具箱也在不断地完善。不同版本的MATLAB,其工具箱不完全相同。在MATLAB5.3版本中,对优化工具箱作了全面的改进。每个原有的常用程序都重新编制了一个新的程序。除fzero和fsolve外都重新起了名字。这些新程序使用一套新的控制算法的选项。与原有的程序相比,新程序的功能增强了。在MATLAB5.3和6.0版本中,原有的优化程序(除fzero和fsolve外)仍然保留并且可以使用,但是它们迟早会被撤消的。鉴于上述情况,本书将只介绍那些新的常用的几个优化程序。
7.3.1 线性规划问题
线性规划是最优化理论发展最成熟,应用最广泛的一个分支。在MATLAB的优化工具箱中用于求解下述线性规划的问题
(线性不等式约束)
(线性等式约束)
(有界约束)
的函数是linprog ,其主要格式为:
[x, fval, exitflag, output, lambda]= linprog(c, A, b, A1, b1 , LB, UB, x0, options)
其中,linprog为函数名,中括号及小括号中所含的参数都是输入或输出变量,这些参数的主要用法及说明如下:
(1)c, A和b是不可缺省的输入宗量;x是不可缺省的输出宗量,它是问题的解。
(2)当x无下界时,在LB处放置[ ]。当无上界时,在UB处放置[ ]。 如果x的某个分量无下界,则置LB(i)=-inf. 如果无上界,则置UB(i)=inf. 如果无线性不等式约束,则在A和b处都放置[ ]。
(3)x0是解的初始近似值。
(4)options是用来控制算法的选项参数向量。
(5)输出宗量fval是目标函数在解x处的值。
(6)输出宗量exitflag的值描述了程序的运行情况。如果exitflag的值大于0,则程序收敛于解x;如果exitflag的值等于0,则函数的计算达到了最大次数;如果exitflag的值小于0,则问题无可行解,或程序运行失败。
(7)输出宗量output输出程序运行的某些信息。
(8)输出宗量Lambda为在解x处的值 Lagrange乘子。
例:求解线性规划问题
min ,
,
,
,
, , .
解:在命令窗口中键入
>> c=[-2,-1,1]; a=[1,4,-1; 2,-2,1]; b=[4; 12]; a1=[1,1,2]; b1=6;
>> lb=[0; 0; -inf]; ub=[inf; inf; 5];
>> [x, z]=linprog(c,a,b,a1,b1,1b,ub)
运行后得到:
x=
4.6667
0.0000
0.6667
z=
-8.6667
7.3.2 非线性约束最优化
在MATLAB的优化工具箱中有一个求解下述非线性规划的问题
(线性不等式约束)
(线性等式约束)
(非线性不等式约束)
(非线性等式约束)
(有界约束)
的函数是fmincon ,其主要格式为:
[x, fval, exitflag, output, lambda, grad, hessian]=fmincon(‘fun’, x0, A, b, A1, b1 , LB,
UB, ‘nonlcon’, options, p1, p2,……)
其中,fmincon为函数名,参数的主要用法有的与线性规划中的相同,下面介绍几个非线性规划特有的:
(1)‘fun’和x0是不可缺省的输入宗量。fun是给出目标函数的M文件的名字,x0是极小值点的初始近似值。x是不可缺省的输出宗量,它是问题的解。
(2)nonlcon 是给出非线性约束函数和的M文件的文件名。
(3)宗量p1,p2…是向目标函数传送的参数的值。
(4)输出宗量grad为目标函数在解x处的梯度。
(5)输出宗量hessian为目标函数在解x处的Hessian矩阵。
例:求解非线性规划问题
min ,
,
,
,
解:建立目标函数的M文件
function y=nline (x)
y=exp (x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
建立非线性约束条件的M文件
function [c1, c2]=nyueshu (x)
c1=[1.5+x(1)*x(2)-x(1)-x(2); -x(1)*x(2)-10];
c2=0;
在命令窗口中键入
>> x0=[-1,1]; a=[1, -1]; b=1; a1=[1,1]; b1=0;
>> [x, f]=fmincon (‘nline’, x0, a, b, a1, b1, [ ], [ ], ‘nyueshu’)
运行后得到:
x=
-1.2247 1.2247
f=
1.8951
7.3.3 二次规划问题
二次规划数学模型的一般形式为:
其中H为对称矩阵,约束条件与线型规划相同。在MATLAB的优化工具箱中有一个求解上述规划问题的程序:
[x, fval, exitflag, output, lambda]= quadprog(H, c, A, b, A1, b1 , LB, UB, x0, options)
其中,quadprog为函数名,参数的主要用法及说明同线性规划,这里不再赘述。
例求解如下二次优化问题。
解:将目标函数化为标准形式
在命令窗口中键入
>> H=[2, 0; 0, 2]; c=[-8, -10]; a=[3, 2]; b=6; lb=[0, 0]; x0=[1,1];
>> x=quadprog (H, c, a, b, [ ], [ ], lb, [ ], x0)
运行后得到:
x=
0.3077
2.5385
7.3.4 foptions 函数
对于优化的控制,MATLAB共提供了18个参数,这些参数对优化的进行起者很关键的作用。下面就对参数选择函数foptions作详细介绍。
● foptions优化函数调用中的参数选择。参数具体意义如下:
options(1) 参数显示控制(默认值为0)。等于1时显示一些结果。
options(2) 优化点x的精度控制(默认值为1e –4)。
options(3) 优化函数F的精度控制(默认值为1e –4)。
options(4) 违反约束的结束标准(默认值为1e –6)。
options(5) 策略选择。不常用。
options(6) 优化程序方法的选择。值为0时为BFGS算法,值为1时采用DFP算法。
options(7) 线性插值算法选择。值为0时为混合插值算法,值为1时采用立方插值算法。
options(8) 函数值显示(目标-达到问题中的Lambda)。
options(9) 若需要检测用户提供的导数则设为1。
options(10) 函数和约束求值的数目。
options(11) 函数导数求值的个数
options(12) 约束求值的数目。
options(13) 等式约束的数目。
options(14) 函数求值的最大次数(默认值为100变量个数)。
options(15) 用于目标-达到问题中的特殊目标。
options(16) 优化过程中变量的最小梯度值。
options(17) 优化过程中变量的最大梯度值。
options(18) 步长设置(默认值为1或更小)。
本章目录
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -