📄 pfrtempopt_c.m
字号:
function PFRTempOpt_C
% 求反应管最优温度分布(用最优化方法搜索k,并用函数bvp4c求解ODE-BVP问题)
%
% Author: HUANG Huajiang
% Copyright 2003 UNILAB Research Center,
% East China University of Science and Technology, Shanghai, PRC
% $Revision: 1.0 $ $Date: 2003/06/04 $
% 已知参数
k0 = 1;
Z = 1;
tspan = [0.00 0.12 0.24 0.36 0.50 0.62 0.74 0.86 1.00];
k = [1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5];
% 定义优化约束条件
lb = zeros(size(k));
ub = ones(size(k));
lb(1) = 1;
ub(1) = 1;
A = zeros(9,9);
b = zeros(9,1);
for i = 1:8
A(i,i) = -1;
A(i,i+1) = 1;
end
k0 = k;
k = fmincon(@ObjFunc,k0,A,b,[],[],lb,ub,[],[],tspan) % 优化
% 结果输出
solinit = bvpinit(tspan,[1 0 0.2 0.3]);
sol = bvp4c(@ODEs,@BCfun,solinit,[],tspan,k);
x = deval(sol,tspan);
data = [tspan' x' k'];
fprintf('\n\tResults:\n')
fprintf('\t\tt\t\tx1\t\tx2\tλ_1\t\tλ_2hat\tk\n')
for i = 1:length(tspan)
fprintf('\t%.3f',data(i,:))
fprintf('\n')
end
% --------------------------------------------------------------------------
function f = ObjFunc(k,tspan) % 目标函数
solinit = bvpinit(tspan,[1 0 0.2 0.3]);
sol = bvp4c(@ODEs,@BCfun,solinit,[],tspan,k);
x = deval(sol,tspan); % x(3,:)=rambda(1,:), x(4,:)=rambda(2,:)
f = mean(abs(x(1,:).*(x(4,:)-x(3,:)) + 2*x(2,:).*k.*(x(3,:)-3*x(4,:))))
% --------------------------------------------------------------------------
function dxdt = ODEs(t,x,tspan,k) % ODE方程
k = spline(tspan,k,t);
rambda(1) = x(3);
rambda(2) = x(4);
k1 = k;
k2 = k*k;
k3 = 2*k*k;
% 浓度方程
dxdt(1) = k2*x(2)-k1*x(1);
dxdt(2) = k1*x(1)-(k2+k3)*x(2);
% 伴随方程
dxdt(3) = k*(rambda(1)-rambda(2));
dxdt(4) = k^2*(3*rambda(2)-rambda(1));
dxdt = dxdt';
% --------------------------------------------------------------------------
function bc = BCfun(ya,yb,tspan,k) % 边界条件
bc = [ya(1)-1; ya(2); yb(3); yb(4)-1];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -