📄 bcmprepare.m
字号:
function net = bcmprepare(net, verbosity)% bcmprepare - Pre-compute prior matrices for Bayesian Committee Machine (BCM)%% Synopsis:% net = bcmprepare(net)% net = bcmprepare(net,verbosity)% % Arguments:% net: Initialized BCM structure, as output by bcminit.m (training data must% already be assigned to each module)% verbosity: (optional) Use a value >0 to display progress information% % Returns:% net: Modified BCM structure, where now the fields net.invPrior and% net.weight are computed% % Description:% Pre-compute the matrices that are repeatedly used in BCM forward% propagation, that are the inverse covariance matrix of each module,% and the weight vector for GP predictions.% % % See also: bcm,bcminit% % Author(s): Anton Schwaighofer, Nov 2004% $Id: bcmprepare.m,v 1.1 2004/11/18 21:20:55 anton Exp $error(nargchk(1, 2, nargin));error(consist(net, 'bcm'));if nargin<2, verbosity=0;endif verbosity>0, fprintf('Pre-computing prior matrices for %i modules ', nbModules);endfor i = 1:length(net.module), netI = net.module(i); % gpcovar computes the kernel matrix of the given points, and also adds % the measurement noise. Kprior = gpcovar(netI, netI.tr_in); net.invPrior{i} = inv(Kprior); % Measurement noise is restricted to a minimum value of 1e-8 in the % Netlab routines. Thus, the matrices should be so well conditioned % that we can solve the linear system by inversion, instead of mldivide net.weight{i} = net.invPrior{i} * netI.tr_targets; if verbosity==2, fprintf('.'); endendif verbosity==2, fprintf('\n');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -