📄 page62.html
字号:
We will confirm this result in Section <A HREF="page63.html#secasymptoticpolyi"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> below.<P>The next theorem addresses the asymptotic behaviorof the product of two functions whose asymptotic behaviors are known:<P><BLOCKQUOTE> <b>Theorem</b><A NAME="theoremiii"> </A>If <IMG WIDTH=117 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58677" SRC="img262.gif" > and <IMG WIDTH=118 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58679" SRC="img263.gif" >, then<P> <IMG WIDTH=367 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath58668" SRC="img309.gif" ><P></BLOCKQUOTE><P> extbfProofBy Definition <A HREF="page59.html#defnbigoh"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>, there exist two integers, <IMG WIDTH=15 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58699" SRC="img269.gif" > and <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58701" SRC="img270.gif" >and two constants <IMG WIDTH=12 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58703" SRC="img271.gif" > and <IMG WIDTH=13 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58705" SRC="img272.gif" > such that <IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58707" SRC="img273.gif" > for <IMG WIDTH=45 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58709" SRC="img274.gif" > and <IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58711" SRC="img275.gif" > for <IMG WIDTH=46 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58713" SRC="img276.gif" >.Furthermore, by Definition <A HREF="page59.html#defnbigoh"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>, <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif" > and <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58683" SRC="img265.gif" > are both non-negative for all integers <IMG WIDTH=39 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58503" SRC="img238.gif" >.<P>Let <IMG WIDTH=120 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58715" SRC="img277.gif" > and <IMG WIDTH=62 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58857" SRC="img310.gif" >.Consider the product <IMG WIDTH=92 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58859" SRC="img311.gif" > for <IMG WIDTH=47 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58525" SRC="img239.gif" >:<P> <IMG WIDTH=500 HEIGHT=40 ALIGN=BOTTOM ALT="eqnarray1521" SRC="img312.gif" ><P>Thus, <IMG WIDTH=230 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58863" SRC="img313.gif" >.<P>Theorem <A HREF="page62.html#theoremiii"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> describes a simple,but extremely useful property of big oh.Consider the functions <IMG WIDTH=228 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58865" SRC="img314.gif" > and <IMG WIDTH=192 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58867" SRC="img315.gif" >.By Theorem <A HREF="page62.html#theoremiii"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>,the asymptotic behavior of the product <IMG WIDTH=92 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58859" SRC="img311.gif" >is <IMG WIDTH=139 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58871" SRC="img316.gif" >.That is, we are able to determine the asymptotic behavior ofthe product without having to go through the gory details ofcalculating that <IMG WIDTH=326 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58873" SRC="img317.gif" >.<P>The next theorem is closely related to the preceding onein that it also shows how big oh behaves with respect to multiplication.<P><BLOCKQUOTE> <b>Theorem</b><A NAME="theoremiv"> </A>If <IMG WIDTH=117 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58677" SRC="img262.gif" > and <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif" > is a function whose value is non-negativefor integers <IMG WIDTH=39 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58503" SRC="img238.gif" >,then<P> <IMG WIDTH=367 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath58669" SRC="img318.gif" ><P></BLOCKQUOTE><P> extbfProofBy Definition <A HREF="page59.html#defnbigoh"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>, there exist integers <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58491" SRC="img235.gif" >and constant <IMG WIDTH=13 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58883" SRC="img319.gif" > such that <IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58885" SRC="img320.gif" > for <IMG WIDTH=47 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58525" SRC="img239.gif" >.Since <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif" > is never negative,<P> <IMG WIDTH=393 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath58670" SRC="img321.gif" ><P>Thus, <IMG WIDTH=230 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58891" SRC="img322.gif" >.<P>Theorem <A HREF="page62.html#theoremiv"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> applies when we multiply a function, <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif" >,whose asymptotic behavior is known to be <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58729" SRC="img282.gif" >,by another function <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif" >.The asymptotic behavior of the result is simply <IMG WIDTH=116 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58899" SRC="img323.gif" >.<P>One way to interpret Theorem <A HREF="page62.html#theoremiv"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>is that it allows us to do the following mathematical manipulation:<P> <IMG WIDTH=500 HEIGHT=40 ALIGN=BOTTOM ALT="eqnarray1533" SRC="img324.gif" ><P>That is, Fallacy <A HREF="page61.html#fallacyi"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> notwithstanding,we can multiply both sides of the ``equation'' by <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif" >and the ``equality'' still holds.Furthermore, when we multiply <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58729" SRC="img282.gif" > by <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif" >,we simply bring the <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif" > inside the <IMG WIDTH=27 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline57621" SRC="img1.gif" >.<P>The last theorem in this sectionintroduces the <em>transitive property</em> of big oh:<P><BLOCKQUOTE> <b>Theorem (Transitive Property)</b><A NAME=1539> </A><A NAME="theoremv"> </A>If <I>f</I>(<I>n</I>)=<I>O</I>(<I>g</I>(<I>n</I>)) and <I>g</I>(<I>n</I>)=<I>O</I>(<I>h</I>(<I>n</I>))then <I>f</I>(<I>n</I>)=<I>O</I>(<I>h</I>(<I>n</I>)).</BLOCKQUOTE><P> extbfProofBy Definition <A HREF="page59.html#defnbigoh"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>, there exist two integers, <IMG WIDTH=15 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58699" SRC="img269.gif" > and <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58701" SRC="img270.gif" >and two constants <IMG WIDTH=12 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58703" SRC="img271.gif" > and <IMG WIDTH=13 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58705" SRC="img272.gif" > such that <IMG WIDTH=95 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58925" SRC="img325.gif" > for <IMG WIDTH=45 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58709" SRC="img274.gif" > and <IMG WIDTH=95 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58929" SRC="img326.gif" > for <IMG WIDTH=46 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58713" SRC="img276.gif" >.<P>Let <IMG WIDTH=120 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58715" SRC="img277.gif" > and <IMG WIDTH=62 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58857" SRC="img310.gif" >. Then<P> <IMG WIDTH=500 HEIGHT=64 ALIGN=BOTTOM ALT="eqnarray1544" SRC="img327.gif" ><P>Thus, <I>f</I>(<I>n</I>)=<I>O</I>(<I>h</I>(<I>n</I>)).<P>The transitive property of big ohis useful in conjunction with Theorem <A HREF="page62.html#theoremii"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>.Consider <IMG WIDTH=81 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58939" SRC="img328.gif" > which is clearly <IMG WIDTH=40 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58941" SRC="img329.gif" >.If we add to <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif" > the function <IMG WIDTH=81 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58945" SRC="img330.gif" >,then by Theorem <A HREF="page62.html#theoremii"><IMG ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>,the sum <IMG WIDTH=92 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58719" SRC="img279.gif" > is <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58801" SRC="img303.gif" >because <IMG WIDTH=170 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58951" SRC="img331.gif" >.That is, <IMG WIDTH=174 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58953" SRC="img332.gif" >.The combination of the fact that <IMG WIDTH=98 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58955" SRC="img333.gif" ><em>and</em> the transitive property of big oh,allows us to conclude that the sum is <IMG WIDTH=40 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58941" SRC="img329.gif" >.<P><HR><A NAME="tex2html1925" HREF="page63.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="../icons/next_motif.gif"></A> <A NAME="tex2html1923" HREF="page59.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="../icons/up_motif.gif"></A> <A NAME="tex2html1917" HREF="page61.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="../icons/previous_motif.gif"></A> <A NAME="tex2html1927" HREF="page611.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="../icons/index_motif.gif"></A> <P><ADDRESS><img src="../icons/bruno.gif" alt="Bruno" align=right><a href="../copyright.html">Copyright © 2003</a> by <a href="../signature.html">Bruno R. Preiss, P.Eng.</a> All rights reserved.</ADDRESS></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -