⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 page62.html

📁 Data Structures And Algorithms With Object-Oriented Design Patterns In Python (2003) source code and
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<HTML><HEAD><TITLE>Properties of Big Oh</TITLE></HEAD><BODY bgcolor="#FFFFFF"> <a href="../index.html" target="_top"><img src="../icons/usins.gif" alt="Logo" align=right></a><b>Data Structures and Algorithms with Object-Oriented Design Patterns in Python</b><br><A NAME="tex2html1925" HREF="page63.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="../icons/next_motif.gif"></A> <A NAME="tex2html1923" HREF="page59.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="../icons/up_motif.gif"></A> <A NAME="tex2html1917" HREF="page61.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="../icons/previous_motif.gif"></A>  <A NAME="tex2html1927" HREF="page611.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="../icons/index_motif.gif"></A> <BR><HR><H2><A NAME="SECTION003130000000000000000">Properties of Big Oh</A></H2><P>In this section we examine some of the mathematical properties of big oh.In particular, suppose we know that  <IMG WIDTH=117 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58677" SRC="img262.gif"  > and  <IMG WIDTH=118 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58679" SRC="img263.gif"  >.<UL><LI> What can we say about the asymptotic behavior of the <em>sum</em> of	 <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif"  > and  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58683" SRC="img265.gif"  >?	(Theorems&nbsp;<A HREF="page62.html#theoremi"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> and&nbsp;<A HREF="page62.html#theoremii"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>).<LI> What can we say about the asymptotic behavior of the	<em>product</em> of  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif"  > and  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58683" SRC="img265.gif"  >?	(Theorems&nbsp;<A HREF="page62.html#theoremiii"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> and&nbsp;<A HREF="page62.html#theoremiv"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>).<LI> How are  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif"  > and  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58691" SRC="img266.gif"  > related when	 <IMG WIDTH=94 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58693" SRC="img267.gif"  >?	(Theorem&nbsp;<A HREF="page62.html#theoremv"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>).</UL><P>The first theorem addresses the asymptotic behavior of the sumof two functions whose asymptotic behaviors are known:<P><BLOCKQUOTE> <b>Theorem</b><A NAME="theoremi">&#160;</A>If  <IMG WIDTH=117 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58677" SRC="img262.gif"  > and  <IMG WIDTH=118 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58679" SRC="img263.gif"  >,then<P> <IMG WIDTH=382 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath58665" SRC="img268.gif"  ><P></BLOCKQUOTE><P>	extbfProofBy Definition&nbsp;<A HREF="page59.html#defnbigoh"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>, there exist two integers,  <IMG WIDTH=15 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58699" SRC="img269.gif"  > and  <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58701" SRC="img270.gif"  >and two constants  <IMG WIDTH=12 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58703" SRC="img271.gif"  > and  <IMG WIDTH=13 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58705" SRC="img272.gif"  > such that <IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58707" SRC="img273.gif"  > for  <IMG WIDTH=45 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58709" SRC="img274.gif"  > and <IMG WIDTH=107 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58711" SRC="img275.gif"  > for  <IMG WIDTH=46 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58713" SRC="img276.gif"  >.<P>Let  <IMG WIDTH=120 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58715" SRC="img277.gif"  > and  <IMG WIDTH=122 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58717" SRC="img278.gif"  >.Consider the sum  <IMG WIDTH=92 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58719" SRC="img279.gif"  > for  <IMG WIDTH=47 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58525" SRC="img239.gif"  >:<P> <IMG WIDTH=500 HEIGHT=64 ALIGN=BOTTOM ALT="eqnarray1463" SRC="img280.gif"  ><P>Thus,  <IMG WIDTH=260 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58723" SRC="img281.gif"  >.<P>According to Theorem&nbsp;<A HREF="page62.html#theoremi"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>,if we know that functions  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif"  > and  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58683" SRC="img265.gif"  > are <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58729" SRC="img282.gif"  > and  <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58731" SRC="img283.gif"  >, respectively,the <em>sum</em>  <IMG WIDTH=92 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58719" SRC="img279.gif"  > is  <IMG WIDTH=145 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58735" SRC="img284.gif"  >.The meaning of  <IMG WIDTH=122 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58737" SRC="img285.gif"  > is this context isthe <em>function</em> <I>h</I>(<I>n</I>) where  <IMG WIDTH=172 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58741" SRC="img286.gif"  >for integers all  <IMG WIDTH=39 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58503" SRC="img238.gif"  >.<P>For example, consider the functions  <IMG WIDTH=65 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58745" SRC="img287.gif"  > and <IMG WIDTH=143 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58747" SRC="img288.gif"  >.Then<P> <IMG WIDTH=500 HEIGHT=94 ALIGN=BOTTOM ALT="eqnarray1468" SRC="img289.gif"  ><P><P>Theorem&nbsp;<A HREF="page62.html#theoremii"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> helps us simplify the asymptotic analysisof the sum of functions by allowing us to drop the  <IMG WIDTH=29 HEIGHT=8 ALIGN=BOTTOM ALT="tex2html_wrap_inline58753" SRC="img290.gif"  >required by Theorem&nbsp;<A HREF="page62.html#theoremi"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> in certain circumstances:<P><BLOCKQUOTE> <b>Theorem</b><A NAME="theoremii">&#160;</A>If  <IMG WIDTH=144 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58755" SRC="img291.gif"  >in which  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif"  > and  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58683" SRC="img265.gif"  > are both non-negative for all integers  <IMG WIDTH=39 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58503" SRC="img238.gif"  >such that  <IMG WIDTH=172 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58763" SRC="img292.gif"  >for some limit  <IMG WIDTH=41 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58765" SRC="img293.gif"  >,then  <IMG WIDTH=112 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58767" SRC="img294.gif"  >.</BLOCKQUOTE><P>	extbfProofAccording to the definition of limits<A NAME=1482>&#160;</A>, the notation<P> <IMG WIDTH=304 HEIGHT=38 ALIGN=BOTTOM ALT="displaymath58666" SRC="img295.gif"  ><P>means that, given any arbitrary positive value  <IMG WIDTH=6 HEIGHT=7 ALIGN=BOTTOM ALT="tex2html_wrap_inline58769" SRC="img296.gif"  >,it is possible to find a value  <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58491" SRC="img235.gif"  >such that for all  <IMG WIDTH=47 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58525" SRC="img239.gif"  ><P> <IMG WIDTH=305 HEIGHT=40 ALIGN=BOTTOM ALT="displaymath58667" SRC="img297.gif"  ><P><P>Thus, if we chose a particular value, say  <IMG WIDTH=13 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58775" SRC="img298.gif"  >,then there exists a corresponding  <IMG WIDTH=16 HEIGHT=14 ALIGN=MIDDLE ALT="tex2html_wrap_inline58491" SRC="img235.gif"  > such that<P> <IMG WIDTH=500 HEIGHT=105 ALIGN=BOTTOM ALT="eqnarray1488" SRC="img299.gif"  ><P><P>Consider the sum  <IMG WIDTH=144 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58755" SRC="img291.gif"  >:<P> <IMG WIDTH=500 HEIGHT=88 ALIGN=BOTTOM ALT="eqnarray1494" SRC="img300.gif"  ><P>where  <IMG WIDTH=138 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58781" SRC="img301.gif"  >.Thus,  <IMG WIDTH=112 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58767" SRC="img294.gif"  >.<P>Consider a pair of functions  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58681" SRC="img264.gif"  > and  <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58683" SRC="img265.gif"  >,which are known to be  <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58729" SRC="img282.gif"  > and  <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58731" SRC="img283.gif"  >, respectively.According to Theorem&nbsp;<A HREF="page62.html#theoremi"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A>,the sum  <IMG WIDTH=144 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58755" SRC="img291.gif"  > is  <IMG WIDTH=145 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58735" SRC="img284.gif"  >.However, Theorem&nbsp;<A HREF="page62.html#theoremii"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> says that,if  <IMG WIDTH=139 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58797" SRC="img302.gif"  > exists,then the sum <I>f</I>(<I>n</I>) is simply  <IMG WIDTH=60 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58801" SRC="img303.gif"  > which,by the transitive property (see Theorem&nbsp;<A HREF="page62.html#theoremv"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> below), is  <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58729" SRC="img282.gif"  >.<P>In other words, if the ratio  <IMG WIDTH=80 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58805" SRC="img304.gif"  >asymptotically approaches a constant as <I>n</I> gets large,we can say that  <IMG WIDTH=92 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58719" SRC="img279.gif"  > is  <IMG WIDTH=59 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58729" SRC="img282.gif"  >,which is often a lot simpler than  <IMG WIDTH=145 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58735" SRC="img284.gif"  >.<P>Theorem&nbsp;<A HREF="page62.html#theoremii"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> is particularly useful result.Consider  <IMG WIDTH=73 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58815" SRC="img305.gif"  > and  <IMG WIDTH=73 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58627" SRC="img257.gif"  >.<P> <IMG WIDTH=500 HEIGHT=96 ALIGN=BOTTOM ALT="eqnarray1501" SRC="img306.gif"  ><P>From this we can conclude that  <IMG WIDTH=228 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline58819" SRC="img307.gif"  >.Thus, Theorem&nbsp;<A HREF="page62.html#theoremii"><IMG  ALIGN=BOTTOM ALT="gif" SRC="../icons/cross_ref_motif.gif"></A> suggests thatthe sum of a series of powers of <I>n</I> is  <IMG WIDTH=44 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58823" SRC="img308.gif"  >,where <I>m</I> is the largest power of <I>n</I> in the summation.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -