⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 modifiedperiodogram.m

📁 Toolbox for biomedical signal processing
💻 M
字号:
function [p,f] = ModifiedPeriodogram(x,fsa,wna,nfa,pfa)%ModifiedPeriodogram: Estimate PSD using a modified periodogram.%%   [p,f] = ModifiedPeriodogram(x,fs,wn,nf,pf);%%   x    Input signal.%   fs   Sample rate (Hz). Default = 1 Hz.%   wn   Window to use. Default = Blackman. Must be same length as x.%   nf   Number of frequencies to evaluate.%        Default = max(128,round(length(x)/2)).%   pf   Plot flag: 0=none (default), 1=screen.%%   p    Power spectral density. %   f    Frequencies at which p is estimated (Hz).%%   Estimates the power spectral density (PSD) of an input signal %   using a Modified Periodogram. This method estimates the PSD by %   calculating the FFT of the windowed signal. The window %   multiplication in the time domain is equivalent to convolution %   (a form of smoothing) in the frequency domain and trades variance %   of the PSD estimate for increased bias. Note that, like the %   periodogram, this is not a consistent estimator and the %   variability of the estimate cannot be controlled by any of the %   user-specified parameters.%%   Since the PSD is an estimate of power, multiplication by the %   window in the time domain is equivalent to convolution by the%   square of the window in the frequency domain. The mean is removed %   from the signal prior to estimation to prevent an impulse at 0 Hz %   from dominating the smoothed estimate.%%   The estimated PSD is scaled such that Parseval's relation is %   approximately approximately satisfied: %                          +pi%      var(x) ~= inv(2*pi) int p(w) dw ~= sum(p)/length(p).%                          -pi%%   Example: Estimate the PSD of an electrocardiogram signal and %   plot the results. %%      load NOISYECG.mat;%      x  = decimate(noisyecg(1:50e3),5);%      fs = fs/5;%      ModifiedPeriodogram(x,fs,[],5000);%%   M. Hayes, Statistical Digital Signal Processing and Modeling. %   New York: John Wiley & Sons, 1996, pp. 408-412.%%   J. G. Proakis, C. M. Rader, F. Ling, C. L. Nikias, M. Moonen, %   and I. K. Proudler, Algorithms for Statistical Signal Processing.%   Saddle River, NJ: Prentice Hall, 2002, pp. 447-448.%%   Version 1.00 JM%%   See also SPECTRUM, WINDOW, and SpectralAnalysis.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -