📄 dhmm_em_demo.m
字号:
O = 3;Q = 2;% "true" parametersprior0 = normalise(rand(Q,1));transmat0 = mk_stochastic(rand(Q,Q));obsmat0 = mk_stochastic(rand(Q,O));% training dataT = 5;nex = 10;data = dhmm_sample(prior0, transmat0, obsmat0, T, nex);% initial guess of parametersprior1 = normalise(rand(Q,1));transmat1 = mk_stochastic(rand(Q,Q));obsmat1 = mk_stochastic(rand(Q,O));% improve guess of parameters using EM[LL, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', 5);LL% use model to compute log likelihoodloglik = dhmm_logprob(data, prior2, transmat2, obsmat2)% log lik is slightly different than LL(end), since it is computed after the final M step
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -