⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 obslike.m

📁 VARHMMBOX, version 1.1, Iead Rezek, Oxford University, MAR 2002 Matlab toolbox for Hidden Markov Mo
💻 M
字号:
function [B] = obslike (X,T,n,hmm)% function [B] = obslike (X,T,n,hmm)%% Evaluate likelihood of data given observation model% for hmm.obsmodel = 'GaussCom','Gauss','LIKE'% % X          N by p data matrix% T          length of series to learn% n          block index (time series data can be split into many blocks)% hmm        hmm data structure%% B          Likelihood of N data pointsp=length(X(1,:));N=length(X(:,1));K=hmm.K;B=zeros(T,K);k1=(2*pi)^(-p/2);switch hmm.obsmodel case 'GaussCom',    iCov=inv(hmm.state(1).Cov);  % All Covs are the same  k2=k1/sqrt(det(hmm.state(1).Cov));  for i=1:T    for l=1:K      d=hmm.state(l).Mu-X((n-1)*T+i,:);      B(i,l)=k2*exp(-0.5*d*iCov*d');    end  end case 'Gauss',  for l=1:K      state(l).iCov=inv(hmm.state(l).Cov);    state(l).k2=k1/sqrt(det(hmm.state(l).Cov));  end  for i=1:T    for l=1:K      d=hmm.state(l).Mu-X((n-1)*T+i,:);      B(i,l)=state(l).k2*exp(-0.5*d*state(l).iCov*d');    end  end case 'Poisson',  for l=1:K    lambda=hmm.state(l).lambda;    B(:,l)=lambda.^X(:,2).*exp(-X(:,1).*lambda)./gamma(X(:,2)+1);  end case 'LIKE',  % The observations are themselves likelihoods  for l=1:K    B(:,l)=X(:,l);  end     otherwise  disp('Unknown observation model');end       

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -