⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 demgausshmm_back.m

📁 VARHMMBOX, version 1.1, Iead Rezek, Oxford University, MAR 2002 Matlab toolbox for Hidden Markov Mo
💻 M
字号:
% A demonstration of the HMM software using a Gaussian observation% model on AR features and backward compatibility features (hmminit)load demgaussT=size(arp,1);% X   original time series% arp AR(4) featuresplot(X);title('Original data');disp('The middle section of data is mainly 10Hz activity');disp('wheras the beginning and end sections are just noise');disp(' ');disp('Press a key to continue');pausedisp(' ');disp('We will train a  Gaussian Mixture Model on AR-4 features derived from');disp('overlapping blocks of the time series.');disp('The resulting GMM will be used to initialise an HMM.');disp(' ');disp('Press a key to continue');pause% Train up GMM on this datahmm=struct('K',2);disp(' ');hmm=hmminit(arp,hmm,'full');disp('Means of HMM initialisation');hmm.state(1).Muhmm.state(2).Mu% Train up HMM on observation sequence data using Baum-Welch% This uses the forward-backward method as a sub-routinedisp('We will now train the HMM using Baum/Welch');disp(' ');disp('Press a key to continue');pausedisp('Estimated HMM');hmm.train.cyc=30;hmm.obsmodel='Gauss';hmm.train.obsupdate=ones(1,hmm.K);    % update observation models ?hmm.train.init=1;         % Yes, we've already done initialisationhmm=hmmtrain(arp,T,hmm);disp('Means');hmm.state(1).Muhmm.state(2).Mudisp('Initial State Probabilities, Pi');hmm.Pidisp('State Transition Matrix, P');hmm.P[block]=hmmdecode(arp,T,hmm);% Find most likely hidden state sequence using Viterbi methodfigureplot(block(1).q_star);axis([0 T 0 3]);title('Viterbi decoding');disp('The Viterbi decoding plot shows that the time series');disp('has been correctly partitioned.');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -