⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 evalmodelprior.m

📁 VARHMMBOX, version 1.1, Iead Rezek, Oxford University, MAR 2002 Matlab toolbox for Hidden Markov Mo
💻 M
字号:
function [logprior] = evalmodelprior (hmm);% function [logprior] = evalmodelprior (hmm);% % Evaluates the prior depending on observation model% % hmm data structure logprior vector of log probabilities under prior%K=hmm.K;logprior=[];switch hmm.obsmodel case 'GaussCom',  for l=1:K,    % Means    logprior=[logprior  gaussmd(hmm.state(l).Mu,hmm.state(l).priors.Norm_Mu, ...				hmm.state(l).priors.Norm_Cov,1)];    % Covariances    logprior=[logprior wishart(hmm.state(l).Cov,hmm.state(l).priors.Wish_B, ...			       hmm.state(l).priors.Wish_alpha,1)];  end; case 'Gauss',  for l=1:K,    % Means    logprior=[logprior  gaussmd(hmm.state(l).Mu,hmm.state(l).priors.Norm_Mu, ...				hmm.state(l).priors.Norm_Cov,1)];    % Covariances    logprior=[logprior wishart(hmm.state(l).Cov,hmm.state(l).priors.Wish_B, ...			       hmm.state(l).priors.Wish_alpha,1)];  end; case 'Poisson',  for l=1:K,    % Rate    logprior=[logprior gammapdf(hmm.state(l).lambda, ...				hmm.state(l).priors.Gamma_alpha, ...				hmm.state(l).priors.Gamma_beta,1)];  end; case 'LIKE',  % The observations are themselves likelihoods There is no model to evaluate otherwise  disp('Unknown observation model');end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -