📄 evalmodelprior.m
字号:
function [logprior] = evalmodelprior (hmm);% function [logprior] = evalmodelprior (hmm);% % Evaluates the prior depending on observation model% % hmm data structure logprior vector of log probabilities under prior%K=hmm.K;logprior=[];switch hmm.obsmodel case 'GaussCom', for l=1:K, % Means logprior=[logprior gaussmd(hmm.state(l).Mu,hmm.state(l).priors.Norm_Mu, ... hmm.state(l).priors.Norm_Cov,1)]; % Covariances logprior=[logprior wishart(hmm.state(l).Cov,hmm.state(l).priors.Wish_B, ... hmm.state(l).priors.Wish_alpha,1)]; end; case 'Gauss', for l=1:K, % Means logprior=[logprior gaussmd(hmm.state(l).Mu,hmm.state(l).priors.Norm_Mu, ... hmm.state(l).priors.Norm_Cov,1)]; % Covariances logprior=[logprior wishart(hmm.state(l).Cov,hmm.state(l).priors.Wish_B, ... hmm.state(l).priors.Wish_alpha,1)]; end; case 'Poisson', for l=1:K, % Rate logprior=[logprior gammapdf(hmm.state(l).lambda, ... hmm.state(l).priors.Gamma_alpha, ... hmm.state(l).priors.Gamma_beta,1)]; end; case 'LIKE', % The observations are themselves likelihoods There is no model to evaluate otherwise disp('Unknown observation model');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -