⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arwls.m

📁 HMMBOX, version 3.2, William Penny, Imperial College, Feb 1999 Matlab toolbox for Hidden Markov Mod
💻 M
字号:
function [a,v,y,y_pred] = arwls(Z,w,p);%  function [a,v,y,ypred] = arwls(Z,w,p);%  Weighted Least squares AR algorithm%  See S. Weisberg. Applied Linear Regression. p. 76%  y_pred (t) = - \sum_i a_i y (t-i) + e (t)%  Minimise, E = \sum_t (1/w_t) (y_t-y_pred_t)^2%  Note the sign and ordering. This to keep format with ar_spectra.%  Z      univariate time series %  p      order of model%  a      AR coefficients%  v      variance of residuals%  y      targets%  y_pred predictionsif nargin < 2, error('arwls needs at least three arguments'); endw=w(:);[x,y] = arembed(Z,p);N=length(y);% This requires an N-by-N matrix% c=diag(1./sqrt(w));  % c=c(p+1:p+N,p+1:p+N);% a = pinv(-1*c*x)*c*y;% This only requires an N-by-p matrixc=(1./sqrt(w))*ones(1,p);         c=c(p+1:p+N,:);a = pinv(-1*c.*x)*(c(:,1).*y);y_pred = -x*a;wl=w(p+1:p+N);pl=1./wl;v=sum(pl.*(y-y_pred).^2)/(sum(pl));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -