⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 data-structure

📁 HMMBOX, version 3.2, William Penny, Imperial College, Feb 1999 Matlab toolbox for Hidden Markov Mod
💻
字号:
The routines use a common data structure 'hmm' with fields:hmm.obsmodel		name of observation model			'Gauss'		- Gaussian			'GaussCom'	- Gaussian with common cov			'AR'		- Autoregressive			'LIKE'          - observations are likelihoodshmm.train.obsupdate	update observation model (1 or 0)	 .pupdate	update transition matrix (1 or 0)	 .init		initialised (1 or 0)	 .cyc		max number of cycles through data	 .tol		termination tolerance of likelihoodhmm.data.Xtrain		training data	.T		length of training sequence			.Xtest		testing datahmm.K			number of hidden states   .Pi 			initial state probability   .P			state transition probabilities   .LLtrain		training log likelihood   .LLtest		testing log likelihoodhmm.gmmll		loglikelihood of gmm model used for initialisationhmm.mix			gaussian mixture model trained on same dataFor 'Gauss' and 'GaussCom' observation models we also have:hmm.state(k).Mu		mean vector for state k            .Cov	mean covariance matrix for state k            .a		ar coefficients for state k            .covtype    Covariance type (full/diag)For 'AR' observation models we have:hmm.state(k).p          order of AR modelhmm.state(k).a          parameter vector for AR modelhmm.state(k).v          noise variance for AR modelFor 'LIKE' observation models, there are no extra parameters.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -