📄 data-structure
字号:
The routines use a common data structure 'hmm' with fields:hmm.obsmodel name of observation model 'Gauss' - Gaussian 'GaussCom' - Gaussian with common cov 'AR' - Autoregressive 'LIKE' - observations are likelihoodshmm.train.obsupdate update observation model (1 or 0) .pupdate update transition matrix (1 or 0) .init initialised (1 or 0) .cyc max number of cycles through data .tol termination tolerance of likelihoodhmm.data.Xtrain training data .T length of training sequence .Xtest testing datahmm.K number of hidden states .Pi initial state probability .P state transition probabilities .LLtrain training log likelihood .LLtest testing log likelihoodhmm.gmmll loglikelihood of gmm model used for initialisationhmm.mix gaussian mixture model trained on same dataFor 'Gauss' and 'GaussCom' observation models we also have:hmm.state(k).Mu mean vector for state k .Cov mean covariance matrix for state k .a ar coefficients for state k .covtype Covariance type (full/diag)For 'AR' observation models we have:hmm.state(k).p order of AR modelhmm.state(k).a parameter vector for AR modelhmm.state(k).v noise variance for AR modelFor 'LIKE' observation models, there are no extra parameters.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -