📄 data-structure
字号:
The routines use a common data structure 'chmm' with fields:chmm.P transition probability .Pi initial state probability .K dimension of state space (vector) .LPtrain final training log-posterior .priors.Dir2d_alpha 2-D Dirichlet prior counts for Tx Probabilities .Dir_alpha Dirichlet prior counts for hidden Probabilities @t=0chmm.train.cyc max number of cycles through data .tol termination tolerance of likelihoodchmm.data.Xtrain training data, 1st channel .Ytrain training data, 2nd channel .T length of training sequence chmm.hmmone and chmm.hmmtwo .obsmodel name of observation model 'Gauss' - Gaussian 'GaussCom' - Gaussian with common cov 'LIKE' - observations are likelihoods .K dimension of state-space .obsupdate update observation model .updatep update state transition matrix .Pi initial state probability .P state transition probabilities (3D array b/c 2 parent nodes) .init initialised (1 or 0) .gmmll log-likelihood of gmm model used for initialisation .mix Gaussian mixture model trained on same data .train.init initialisation flag .obsupdate update observation model (1 or 0) .pupdate update transition matrix (1 or 0) .priors.Dir3d_alpha 3-D Dirichlet prior for Tx probabilities .Dir_alpha Dirichlet prior for initial state probabilityFor 'Gauss' and 'GaussCom' observation models we also have:chmm.hmmone.state(k).Mu mean vector for state k .Cov mean covariance matrix for state k .a ar coefficients for state k .priors priors for each state .norm_Mu Prior for mean: mean (1,dimension(data)) .norm_Cov Prior for mean: covariance .norm_Prec Prior for mean: precision .Wish_alpha Prior for Covariance: scale parameter .Wish_B Prior for Covariance: shape matrix .Wish_k Prior for Covariance: dimension of shape matrixFor 'AR' observation models we have:chmm.hmmone.state(k).p order of AR modelchmm.hmmone.state(k).a parameter vector for AR modelchmm.hmmone.state(k).v noise variance for AR modelFor 'LIKE' observation models, there are no extra parameters.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -