⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 netlib-patches

📁 fortran版本的eslack,好不容易找到的。里面有程序的索引。主要包括了常用了矩阵计算代码。
💻
字号:
*** bandr.f.orig	Tue Oct  3 14:04:34 1989--- bandr.f	Mon Jan  8 18:57:45 1990****************** 98,104 ****                 if (g .eq. 0.0e0) go to 600                 b1 = a(j1,1) / g                 b2 = b1 * d(j1) / d(j)!                s2 = 1.0e0 / (1.0e0 + b1 * b2)                 if (s2 .ge. 0.5e0 ) go to 450                 b1 = g / a(j1,1)                 b2 = b1 * d(j) / d(j1)--- 98,109 ----                 if (g .eq. 0.0e0) go to 600                 b1 = a(j1,1) / g                 b2 = b1 * d(j1) / d(j)!                if (abs(b1) .gt. 1.0e0) then!                   u = 1.0e0 / b1!                   s2 = u / (u + b2)!                else!                   s2 = 1.0e0 / (1.0e0 + b1 * b2)!                endif                 if (s2 .ge. 0.5e0 ) go to 450                 b1 = g / a(j1,1)                 b2 = b1 * d(j) / d(j1)*** comlr2.f.orig	Mon Jan  8 18:31:33 1990--- comlr2.f	Mon Jan  8 18:49:49 1990****************** 323,331 ****  c     .......... end backsubstitution ..........        enm1 = n - 1  c     .......... vectors of isolated roots ..........!       do  840 i = 1, enm1           if (i .ge. low .and. i .le. igh) go to 840!          do 820 j = i+1, n              zr(i,j) = hr(i,j)              zi(i,j) = hi(i,j)    820    continue--- 323,331 ----  c     .......... end backsubstitution ..........        enm1 = n - 1  c     .......... vectors of isolated roots ..........!       do  840 i = 1, n           if (i .ge. low .and. i .le. igh) go to 840!          do 820 j = i, n              zr(i,j) = hr(i,j)              zi(i,j) = hi(i,j)    820    continue****************** 333,340 ****    840 continue  c     .......... multiply by transformation matrix to give  c                vectors of original full matrix.! c                for j=n step -1 until low+1 do -- ..........!       do 880 j = n, low+1, -1           m = min0(j,igh)  c           do 880 i = low, igh--- 333,340 ----    840 continue  c     .......... multiply by transformation matrix to give  c                vectors of original full matrix.! c                for j=n step -1 until low do -- ..........!       do 880 j = n, low, -1           m = min0(j,igh)  c           do 880 i = low, igh*** comqr2.f.orig	Tue Oct  3 14:07:59 1989--- comqr2.f	Mon Jan  8 18:51:48 1990****************** 396,404 ****  c     .......... end backsubstitution ..........        enm1 = n - 1  c     .......... vectors of isolated roots ..........!       do  840 i = 1, enm1           if (i .ge. low .and. i .le. igh) go to 840!          do 820 j = i+1, n              zr(i,j) = hr(i,j)              zi(i,j) = hi(i,j)    820    continue--- 396,404 ----  c     .......... end backsubstitution ..........        enm1 = n - 1  c     .......... vectors of isolated roots ..........!       do  840 i = 1, n           if (i .ge. low .and. i .le. igh) go to 840!          do 820 j = i, n              zr(i,j) = hr(i,j)              zi(i,j) = hi(i,j)    820    continue****************** 406,413 ****    840 continue  c     .......... multiply by transformation matrix to give  c                vectors of original full matrix.! c                for j=n step -1 until low+1 do -- ..........!       do 880 j = n, low+1, -1           m = min0(j,igh)  c           do 880 i = low, igh--- 406,413 ----    840 continue  c     .......... multiply by transformation matrix to give  c                vectors of original full matrix.! c                for j=n step -1 until low do -- ..........!       do 880 j = n, low, -1           m = min0(j,igh)  c           do 880 i = low, igh*** hqr.f.orig	Mon Jan  8 18:31:13 1990--- hqr.f	Mon Jan  8 18:34:06 1990****************** 172,178 ****           if (notlas) go to 225  c     .......... row modification ..........  c"    ( prefer vector!          do 200 j = k, n              foo = h(k,j) + q * h(k+1,j)              h(k,j) = h(k,j) - foo * x              h(k+1,j) = h(k+1,j) - foo * y--- 172,178 ----           if (notlas) go to 225  c     .......... row modification ..........  c"    ( prefer vector!          do 200 j = k, en              foo = h(k,j) + q * h(k+1,j)              h(k,j) = h(k,j) - foo * x              h(k+1,j) = h(k+1,j) - foo * y****************** 180,186 ****  c           j = min0(en,k+3)  c     .......... column modification ..........!          do 210 i = 1, j              foo = x * h(i,k) + y * h(i,k+1)              h(i,k) = h(i,k) - foo              h(i,k+1) = h(i,k+1) - foo * q--- 180,186 ----  c           j = min0(en,k+3)  c     .......... column modification ..........!          do 210 i = l, j              foo = x * h(i,k) + y * h(i,k+1)              h(i,k) = h(i,k) - foo              h(i,k+1) = h(i,k+1) - foo * q****************** 189,195 ****    225    continue  c     .......... row modification ..........  c"    ( prefer vector!          do 230 j = k, n              foo = h(k,j) + q * h(k+1,j) + r * h(k+2,j)              h(k,j) = h(k,j) - foo * x              h(k+1,j) = h(k+1,j) - foo * y--- 189,195 ----    225    continue  c     .......... row modification ..........  c"    ( prefer vector!          do 230 j = k, en              foo = h(k,j) + q * h(k+1,j) + r * h(k+2,j)              h(k,j) = h(k,j) - foo * x              h(k+1,j) = h(k+1,j) - foo * y****************** 198,204 ****  c           j = min0(en,k+3)  c     .......... column modification ..........!          do 240 i = 1, j              foo = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2)              h(i,k) = h(i,k) - foo              h(i,k+1) = h(i,k+1) - foo * q--- 198,204 ----  c           j = min0(en,k+3)  c     .......... column modification ..........!          do 240 i = l, j              foo = x * h(i,k) + y * h(i,k+1) + zz * h(i,k+2)              h(i,k) = h(i,k) - foo              h(i,k+1) = h(i,k+1) - foo * q

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -