📄 stream.cc
字号:
for (n = 10; n <= 13; ++n) { code = lookBits(n); if (n < 13) { code <<= 13 - n; } p = &blackTab1[code]; if (p->bits == n) { eatBits(n); return p->n; } } } error(getPos(), "Bad black code (%04x) in CCITTFax stream", code); // eat a bit and return a positive number so that the caller doesn't // go into an infinite loop eatBits(1); return 1;}short CCITTFaxStream::lookBits(int n) { int c; while (inputBits < n) { if ((c = str->getChar()) == EOF) { if (inputBits == 0) { return EOF; } // near the end of the stream, the caller may ask for more bits // than are available, but there may still be a valid code in // however many bits are available -- we need to return correct // data in this case return (inputBuf << (n - inputBits)) & (0xffff >> (16 - n)); } inputBuf = (inputBuf << 8) + c; inputBits += 8; } return (inputBuf >> (inputBits - n)) & (0xffff >> (16 - n));}GString *CCITTFaxStream::getPSFilter(int psLevel, char *indent) { GString *s; char s1[50]; if (psLevel < 2) { return NULL; } if (!(s = str->getPSFilter(psLevel, indent))) { return NULL; } s->append(indent)->append("<< "); if (encoding != 0) { sprintf(s1, "/K %d ", encoding); s->append(s1); } if (endOfLine) { s->append("/EndOfLine true "); } if (byteAlign) { s->append("/EncodedByteAlign true "); } sprintf(s1, "/Columns %d ", columns); s->append(s1); if (rows != 0) { sprintf(s1, "/Rows %d ", rows); s->append(s1); } if (!endOfBlock) { s->append("/EndOfBlock false "); } if (black) { s->append("/BlackIs1 true "); } s->append(">> /CCITTFaxDecode filter\n"); return s;}GBool CCITTFaxStream::isBinary(GBool last) { return str->isBinary(gTrue);}//------------------------------------------------------------------------// DCTStream//------------------------------------------------------------------------// IDCT constants (20.12 fixed point format)#define dctCos1 4017 // cos(pi/16)#define dctSin1 799 // sin(pi/16)#define dctCos3 3406 // cos(3*pi/16)#define dctSin3 2276 // sin(3*pi/16)#define dctCos6 1567 // cos(6*pi/16)#define dctSin6 3784 // sin(6*pi/16)#define dctSqrt2 5793 // sqrt(2)#define dctSqrt1d2 2896 // sqrt(2) / 2// color conversion parameters (16.16 fixed point format)#define dctCrToR 91881 // 1.4020#define dctCbToG -22553 // -0.3441363#define dctCrToG -46802 // -0.71413636#define dctCbToB 116130 // 1.772// clip [-256,511] --> [0,255]#define dctClipOffset 256static Guchar dctClip[768];static int dctClipInit = 0;// zig zag decode mapstatic int dctZigZag[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63};DCTStream::DCTStream(Stream *strA, GBool colorXformA): FilterStream(strA) { int i, j; colorXform = colorXformA; progressive = interleaved = gFalse; width = height = 0; mcuWidth = mcuHeight = 0; numComps = 0; comp = 0; x = y = dy = 0; for (i = 0; i < 4; ++i) { for (j = 0; j < 32; ++j) { rowBuf[i][j] = NULL; } frameBuf[i] = NULL; } if (!dctClipInit) { for (i = -256; i < 0; ++i) dctClip[dctClipOffset + i] = 0; for (i = 0; i < 256; ++i) dctClip[dctClipOffset + i] = i; for (i = 256; i < 512; ++i) dctClip[dctClipOffset + i] = 255; dctClipInit = 1; }}DCTStream::~DCTStream() { close(); delete str;}void DCTStream::reset() { int i, j; str->reset(); progressive = interleaved = gFalse; width = height = 0; numComps = 0; numQuantTables = 0; numDCHuffTables = 0; numACHuffTables = 0; gotJFIFMarker = gFalse; gotAdobeMarker = gFalse; restartInterval = 0; if (!readHeader()) { y = height; return; } // compute MCU size if (numComps == 1) { compInfo[0].hSample = compInfo[0].vSample = 1; } mcuWidth = compInfo[0].hSample; mcuHeight = compInfo[0].vSample; for (i = 1; i < numComps; ++i) { if (compInfo[i].hSample > mcuWidth) { mcuWidth = compInfo[i].hSample; } if (compInfo[i].vSample > mcuHeight) { mcuHeight = compInfo[i].vSample; } } mcuWidth *= 8; mcuHeight *= 8; // figure out color transform if (colorXform == -1) { if (numComps == 3) { if (gotJFIFMarker) { colorXform = 1; } else if (compInfo[0].id == 82 && compInfo[1].id == 71 && compInfo[2].id == 66) { // ASCII "RGB" colorXform = 0; } else { colorXform = 1; } } else { colorXform = 0; } } if (progressive || !interleaved) { // allocate a buffer for the whole image bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth; bufHeight = ((height + mcuHeight - 1) / mcuHeight) * mcuHeight; for (i = 0; i < numComps; ++i) { frameBuf[i] = (int *)gmallocn(bufWidth * bufHeight, sizeof(int)); memset(frameBuf[i], 0, bufWidth * bufHeight * sizeof(int)); } // read the image data do { restartMarker = 0xd0; restart(); readScan(); } while (readHeader()); // decode decodeImage(); // initialize counters comp = 0; x = 0; y = 0; } else { // allocate a buffer for one row of MCUs bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth; for (i = 0; i < numComps; ++i) { for (j = 0; j < mcuHeight; ++j) { rowBuf[i][j] = (Guchar *)gmallocn(bufWidth, sizeof(Guchar)); } } // initialize counters comp = 0; x = 0; y = 0; dy = mcuHeight; restartMarker = 0xd0; restart(); }}void DCTStream::close() { int i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 32; ++j) { gfree(rowBuf[i][j]); rowBuf[i][j] = NULL; } gfree(frameBuf[i]); frameBuf[i] = NULL; } FilterStream::close();}int DCTStream::getChar() { int c; if (y >= height) { return EOF; } if (progressive || !interleaved) { c = frameBuf[comp][y * bufWidth + x]; if (++comp == numComps) { comp = 0; if (++x == width) { x = 0; ++y; } } } else { if (dy >= mcuHeight) { if (!readMCURow()) { y = height; return EOF; } comp = 0; x = 0; dy = 0; } c = rowBuf[comp][dy][x]; if (++comp == numComps) { comp = 0; if (++x == width) { x = 0; ++y; ++dy; if (y == height) { readTrailer(); } } } } return c;}int DCTStream::lookChar() { if (y >= height) { return EOF; } if (progressive || !interleaved) { return frameBuf[comp][y * bufWidth + x]; } else { if (dy >= mcuHeight) { if (!readMCURow()) { y = height; return EOF; } comp = 0; x = 0; dy = 0; } return rowBuf[comp][dy][x]; }}void DCTStream::restart() { int i; inputBits = 0; restartCtr = restartInterval; for (i = 0; i < numComps; ++i) { compInfo[i].prevDC = 0; } eobRun = 0;}// Read one row of MCUs from a sequential JPEG stream.GBool DCTStream::readMCURow() { int data1[64]; Guchar data2[64]; Guchar *p1, *p2; int pY, pCb, pCr, pR, pG, pB; int h, v, horiz, vert, hSub, vSub; int x1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i; int c; for (x1 = 0; x1 < width; x1 += mcuWidth) { // deal with restart marker if (restartInterval > 0 && restartCtr == 0) { c = readMarker(); if (c != restartMarker) { error(getPos(), "Bad DCT data: incorrect restart marker"); return gFalse; } if (++restartMarker == 0xd8) restartMarker = 0xd0; restart(); } // read one MCU for (cc = 0; cc < numComps; ++cc) { h = compInfo[cc].hSample; v = compInfo[cc].vSample; horiz = mcuWidth / h; vert = mcuHeight / v; hSub = horiz / 8; vSub = vert / 8; for (y2 = 0; y2 < mcuHeight; y2 += vert) { for (x2 = 0; x2 < mcuWidth; x2 += horiz) { if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data1)) { return gFalse; } transformDataUnit(quantTables[compInfo[cc].quantTable], data1, data2); if (hSub == 1 && vSub == 1) { for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { p1 = &rowBuf[cc][y2+y3][x1+x2]; p1[0] = data2[i]; p1[1] = data2[i+1]; p1[2] = data2[i+2]; p1[3] = data2[i+3]; p1[4] = data2[i+4]; p1[5] = data2[i+5]; p1[6] = data2[i+6]; p1[7] = data2[i+7]; } } else if (hSub == 2 && vSub == 2) { for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) { p1 = &rowBuf[cc][y2+y3][x1+x2]; p2 = &rowBuf[cc][y2+y3+1][x1+x2]; p1[0] = p1[1] = p2[0] = p2[1] = data2[i]; p1[2] = p1[3] = p2[2] = p2[3] = data2[i+1]; p1[4] = p1[5] = p2[4] = p2[5] = data2[i+2]; p1[6] = p1[7] = p2[6] = p2[7] = data2[i+3]; p1[8] = p1[9] = p2[8] = p2[9] = data2[i+4]; p1[10] = p1[11] = p2[10] = p2[11] = data2[i+5]; p1[12] = p1[13] = p2[12] = p2[13] = data2[i+6]; p1[14] = p1[15] = p2[14] = p2[15] = data2[i+7]; } } else { i = 0; for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) { for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) { for (y5 = 0; y5 < vSub; ++y5) for (x5 = 0; x5 < hSub; ++x5) rowBuf[cc][y2+y4+y5][x1+x2+x4+x5] = data2[i]; ++i; } } } } } } --restartCtr; // color space conversion if (colorXform) { // convert YCbCr to RGB if (numComps == 3) { for (y2 = 0; y2 < mcuHeight; ++y2) { for (x2 = 0; x2 < mcuWidth; ++x2) { pY = rowBuf[0][y2][x1+x2]; pCb = rowBuf[1][y2][x1+x2] - 128; pCr = rowBuf[2][y2][x1+x2] - 128; pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16; rowBuf[0][y2][x1+x2] = dctClip[dctClipOffset + pR]; pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16; rowBuf[1][y2][x1+x2] = dctClip[dctClipOffset + pG]; pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16; rowBuf[2][y2][x1+x2] = dctClip[dctClipOffset + pB]; } } // convert YCbCrK to CMYK (K is passed through unchanged) } else if (numComps == 4) { for (y2 = 0; y2 < mcuHeight; ++y2) { for (x2 = 0; x2 < mcuWidth; ++x2) { pY = rowBuf[0][y2][x1+x2]; pCb = rowBuf[1][y2][x1+x2] - 128; pCr = rowBuf[2][y2][x1+x2] - 128; pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16; rowBuf[0][y2][x1+x2] = 255 - dctClip[dctClipOffset + pR]; pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16; rowBuf[1][y2][x1+x2] = 255 - dctClip[dctClipOffset + pG]; pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16; rowBuf[2][y2][x1+x2] = 255 - dctClip[dctClipOffset + pB]; } } } } } return gTrue;}// Read one scan from a progressive or non-interleaved JPEG stream.void DCTStream::readScan() { int data[64]; int x1, y1, dx1, dy1, x2, y2, y3, cc, i; int h, v, horiz, vert, vSub; int *p1; int c; if (scanInfo.numComps == 1) { for (cc = 0; cc < numComps; ++cc) { if (scanInfo.comp[cc]) { break; } } dx1 = mcuWidth / compInfo[cc].hSample; dy1 = mcuHeight / compInfo[cc].vSample; } else { dx1 = mcuWidth; dy1 = mcuHeight; } for (y1 = 0; y1 < height; y1 += dy1) { for (x1 = 0; x1 < width; x1 += dx1) { // deal with restart marker if (restartInterval > 0 && restartCtr == 0) { c = readMarker(); if (c != restartMarker) { error(getPos(), "Bad DCT data: incorrect restart marker"); return; } if (++restartMarker == 0xd8) { restartMarker = 0xd0; } restart(); } // read one MCU for (cc = 0; cc < numComps; ++cc) { if (!scanInfo.comp[cc]) { continue; } h = compInfo[cc].hSample; v = compInfo[cc].vSample; horiz = mcuWidth / h; vert = mcuHeight / v; vSub = vert / 8; for (y2 = 0; y2 < dy1; y2 += vert) { for (x2 = 0; x2 < dx1; x2 += horiz) { // pull out the current values p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)]; for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { data[i] = p1[0]; data[i+1] = p1[1]; data[i+2] = p1[2]; data[i+3] = p1[3]; data[i+4] = p1[4]; data[i+5] = p1[5]; data[i+6] = p1[6]; data[i+7] = p1[7]; p1 += bufWidth * vSub; } // read one data unit if (progressive) { if (!readProgressiveDataUnit( &dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data)) { return; } } else { if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data)) { return; } } // add the data unit into frameBuf p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)]; for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { p1[0] = data[i]; p1[1] = data[i+1]; p1[2] = data[i+2]; p1[3] = data[i+3]; p1[4] = data[i+4]; p1[5] = data[i+5]; p1[6] = data[i+6]; p1[7] = data[i+7]; p1 += bufWidth * vSub; } } } } --restartCtr; } }}// Read one data unit from a sequential JPEG stream.GBool DCTStream::readDataUnit(DCTHuffTable *dcHuffTable, DCTHuffTable *acHuffTable, int *prevDC, int data[64]) { int run, size, amp; int c; int i, j; if ((size = readHuffSym(dcHuffTable)) == 9999) { return gFalse; } if (size > 0) { if ((amp = readAmp(size)) == 9999) { return gFalse; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -