⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsf.cpp

📁 KphoneSI (kpsi) is a SIP (Session Initiation Protocol) user agent for Linux, with which you can in
💻 CPP
字号:
   /******************************************************************       iLBC Speech Coder ANSI-C Source Code       lsf.c       Copyright (C) The Internet Society (2004).       All Rights Reserved.   ******************************************************************/   #include <string.h>   #include <math.h>   #include "iLBC_define.h"   /*----------------------------------------------------------------*    *  conversion from lpc coefficients to lsf coefficients    *---------------------------------------------------------------*/   void a2lsf(       float *freq,/* (o) lsf coefficients */       float *a    /* (i) lpc coefficients */   ){       float steps[LSF_NUMBER_OF_STEPS] =           {(float)0.00635, (float)0.003175, (float)0.0015875,           (float)0.00079375};       float step;       int step_idx;       int lsp_index;       float p[LPC_HALFORDER];       float q[LPC_HALFORDER];       float p_pre[LPC_HALFORDER];       float q_pre[LPC_HALFORDER];       float old_p, old_q, *old;       float *pq_coef;       float omega, old_omega;       int i;       float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;       for (i=0; i<LPC_HALFORDER; i++) {           p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);           q[i] = a[LPC_FILTERORDER - i] - a[i + 1];       }       p_pre[0] = (float)-1.0 - p[0];       p_pre[1] = - p_pre[0] - p[1];       p_pre[2] = - p_pre[1] - p[2];       p_pre[3] = - p_pre[2] - p[3];       p_pre[4] = - p_pre[3] - p[4];       p_pre[4] = p_pre[4] / 2;       q_pre[0] = (float)1.0 - q[0];       q_pre[1] = q_pre[0] - q[1];       q_pre[2] = q_pre[1] - q[2];       q_pre[3] = q_pre[2] - q[3];       q_pre[4] = q_pre[3] - q[4];       q_pre[4] = q_pre[4] / 2;       omega = 0.0;       old_omega = 0.0;       old_p = FLOAT_MAX;       old_q = FLOAT_MAX;       /* Here we loop through lsp_index to find all the          LPC_FILTERORDER roots for omega. */       for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) {           /* Depending on lsp_index being even or odd, we           alternatively solve the roots for the two LSP equations. */           if ((lsp_index & 0x1) == 0) {               pq_coef = p_pre;               old = &old_p;           } else {               pq_coef = q_pre;               old = &old_q;           }           /* Start with low resolution grid */           for (step_idx = 0, step = steps[step_idx];               step_idx < LSF_NUMBER_OF_STEPS;){               /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +               pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */               hlp = (float)cos(omega * TWO_PI);               hlp1 = (float)2.0 * hlp + pq_coef[0];               hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +                   pq_coef[1];               hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];               hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];               hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];               if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){                   if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){                       if (fabs(hlp5) >= fabs(*old)) {                           freq[lsp_index] = omega - step;                       } else {                           freq[lsp_index] = omega;                       }                       if ((*old) >= 0.0){                           *old = (float)-1.0 * FLOAT_MAX;                       } else {                           *old = FLOAT_MAX;                       }                       omega = old_omega;                       step_idx = 0;                       step_idx = LSF_NUMBER_OF_STEPS;                   } else {                       if (step_idx == 0) {                           old_omega = omega;                       }                       step_idx++;                       omega -= steps[step_idx];                       /* Go back one grid step */                       step = steps[step_idx];                   }               } else {               /* increment omega until they are of different sign,               and we know there is at least one root between omega               and old_omega */                   *old = hlp5;                   omega += step;               }           }       }       for (i = 0; i<LPC_FILTERORDER; i++) {           freq[i] = freq[i] * TWO_PI;       }   }   /*----------------------------------------------------------------*    *  conversion from lsf coefficients to lpc coefficients    *---------------------------------------------------------------*/   void lsf2a(       float *a_coef,  /* (o) lpc coefficients */       float *freq     /* (i) lsf coefficients */   ){       int i, j;       float hlp;       float p[LPC_HALFORDER], q[LPC_HALFORDER];       float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER],           a2[LPC_HALFORDER];       float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER],           b2[LPC_HALFORDER];       for (i=0; i<LPC_FILTERORDER; i++) {           freq[i] = freq[i] * PI2;       }       /* Check input for ill-conditioned cases.  This part is not       found in the TIA standard.  It involves the following 2 IF       blocks.  If "freq" is judged ill-conditioned, then we first       modify freq[0] and freq[LPC_HALFORDER-1] (normally       LPC_HALFORDER = 10 for LPC applications), then we adjust       the other "freq" values slightly */       if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){           if (freq[0] <= 0.0) {               freq[0] = (float)0.022;           }           if (freq[LPC_FILTERORDER - 1] >= 0.5) {               freq[LPC_FILTERORDER - 1] = (float)0.499;           }           hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /               (float) (LPC_FILTERORDER - 1);           for (i=1; i<LPC_FILTERORDER; i++) {               freq[i] = freq[i - 1] + hlp;           }       }       memset(a1, 0, LPC_HALFORDER*sizeof(float));       memset(a2, 0, LPC_HALFORDER*sizeof(float));       memset(b1, 0, LPC_HALFORDER*sizeof(float));       memset(b2, 0, LPC_HALFORDER*sizeof(float));       memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));       memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));       /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and       cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.       Note that for this code p[i] specifies the coefficients       used in .Q_A(z) while q[i] specifies the coefficients used       in .P_A(z) */       for (i=0; i<LPC_HALFORDER; i++) {           p[i] = (float)cos(TWO_PI * freq[2 * i]);           q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);       }       a[0] = 0.25;       b[0] = 0.25;       for (i= 0; i<LPC_HALFORDER; i++) {           a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];           b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];           a2[i] = a1[i];           a1[i] = a[i];           b2[i] = b1[i];           b1[i] = b[i];       }       for (j=0; j<LPC_FILTERORDER; j++) {           if (j == 0) {               a[0] = 0.25;               b[0] = -0.25;           } else {               a[0] = b[0] = 0.0;           }           for (i=0; i<LPC_HALFORDER; i++) {               a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];               b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];               a2[i] = a1[i];               a1[i] = a[i];               b2[i] = b1[i];               b1[i] = b[i];           }           a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);       }       a_coef[0] = 1.0;   }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -