⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 short_term.cpp

📁 KphoneSI (kpsi) is a SIP (Session Initiation Protocol) user agent for Linux, with which you can in
💻 CPP
字号:
/* * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. *//* $Header: /cvsroot/kphone/kphoneSI/gsm/short_term.cpp,v 1.1.1.1 2005/10/12 18:17:05 kgfleischmann Exp $ */#include <stdio.h>#include <assert.h>#include "private.h"#include "gsm.h"#include "proto.h"/* *  SHORT TERM ANALYSIS FILTERING SECTION *//* 4.2.8 */static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/	word	* LARpp)	/* out: decoded ..			*/{	register word	temp1 /* , temp2 */;	register long	ltmp;	/* for GSM_ADD */	/*  This procedure requires for efficient implementation	 *  two tables. 	 *	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])	 *  MIC[1..8]  = minimum value of the LARc[1..8]	 */	/*  Compute the LARpp[1..8]	 */	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {	 *	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;	 *		temp2  = *B << 1;	 *		temp1  = GSM_SUB( temp1, temp2 );	 *	 *		assert(*INVA != MIN_WORD);	 *	 *		temp1  = GSM_MULT_R( *INVA, temp1 );	 *		*LARpp = GSM_ADD( temp1, temp1 );	 *	}	 */#undef	STEP#define	STEP( B, MIC, INVA )	\		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\		temp1    = GSM_SUB( temp1, B << 1 );		\		temp1    = GSM_MULT_R( INVA, temp1 );		\		*LARpp++ = GSM_ADD( temp1, temp1 );	STEP(      0,  -32,  13107 );	STEP(      0,  -32,  13107 );	STEP(   2048,  -16,  13107 );	STEP(  -2560,  -16,  13107 );	STEP(     94,   -8,  19223 );	STEP(  -1792,   -8,  17476 );	STEP(   -341,   -4,  31454 );	STEP(  -1144,   -4,  29708 );	/* NOTE: the addition of *MIC is used to restore	 * 	 the sign of *LARc.	 */}/* 4.2.9 *//* Computation of the quantized reflection coefficients  *//* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8] *//* *  Within each frame of 160 analyzed speech samples the short term *  analysis and synthesis filters operate with four different sets of *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) *  and the actual set of decoded LARs (LARpp(j)) * * (Initial value: LARpp(j-1)[1..8] = 0.) */static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),	register word * LARpp_j_1,	register word * LARpp_j,	register word * LARp){	register int 	i;	register longword ltmp;	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));	}}static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),	register word * LARpp_j_1,	register word * LARpp_j,	register word * LARp){	register int i;	register longword ltmp;	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));	}}static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),	register word * LARpp_j_1,	register word * LARpp_j,	register word * LARp){	register int i;	register longword ltmp;	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));	}}static void Coefficients_40_159 P2((LARpp_j, LARp),	register word * LARpp_j,	register word * LARp){	register int i;	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)		*LARp = *LARpp_j;}/* 4.2.9.2 */static void LARp_to_rp P1((LARp),	register word * LARp)	/* [0..7] IN/OUT  *//* *  The input of this procedure is the interpolated LARp[0..7] array. *  The reflection coefficients, rp[i], are used in the analysis *  filter and in the synthesis filter. */{	register int 		i;	register word		temp;	register longword	ltmp;	for (i = 1; i <= 8; i++, LARp++) {		/* temp = GSM_ABS( *LARp );	         *		 * if (temp < 11059) temp <<= 1;		 * else if (temp < 20070) temp += 11059;		 * else temp = GSM_ADD( temp >> 2, 26112 );		 *		 * *LARp = *LARp < 0 ? -temp : temp;		 */		if (*LARp < 0) {			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);			*LARp = - ((temp < 11059) ? temp << 1				: ((temp < 20070) ? temp + 11059				:  GSM_ADD( temp >> 2, 26112 )));		} else {			temp  = *LARp;			*LARp =    (temp < 11059) ? temp << 1				: ((temp < 20070) ? temp + 11059				:  GSM_ADD( temp >> 2, 26112 ));		}	}}/* 4.2.10 */static void Short_term_analysis_filtering P4((S,rp,k_n,s),	struct gsm_state * S,	register word	* rp,	/* [0..7]	IN	*/	register int 	k_n, 	/*   k_end - k_start	*/	register word	* s	/* [0..n-1]	IN/OUT	*/)/* *  This procedure computes the short term residual signal d[..] to be fed *  to the RPE-LTP loop from the s[..] signal and from the local rp[..] *  array (quantized reflection coefficients).  As the call of this *  procedure can be done in many ways (see the interpolation of the LAR *  coefficient), it is assumed that the computation begins with index *  k_start (for arrays d[..] and s[..]) and stops with index k_end *  (k_start and k_end are defined in 4.2.9.1).  This procedure also *  needs to keep the array u[0..7] in memory for each call. */{	register word		* u = S->u;	register int		i;	register word		di, zzz, ui, sav, rpi;	register longword 	ltmp;	for (; k_n--; s++) {		di = sav = *s;		for (i = 0; i < 8; i++) {		/* YYY */			ui    = u[i];			rpi   = rp[i];			u[i]  = sav;			zzz   = GSM_MULT_R(rpi, di);			sav   = GSM_ADD(   ui,  zzz);			zzz   = GSM_MULT_R(rpi, ui);			di    = GSM_ADD(   di,  zzz );		}		*s = di;	}}#if defined(USE_FLOAT_MUL) && defined(FAST)static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),	struct gsm_state * S,	register word	* rp,	/* [0..7]	IN	*/	register int 	k_n, 	/*   k_end - k_start	*/	register word	* s	/* [0..n-1]	IN/OUT	*/){	register word		* u = S->u;	register int		i;	float 	  uf[8],		 rpf[8];	register float scalef = 3.0517578125e-5;	register float		sav, di, temp;	for (i = 0; i < 8; ++i) {		uf[i]  = u[i];		rpf[i] = rp[i] * scalef;	}	for (; k_n--; s++) {		sav = di = *s;		for (i = 0; i < 8; ++i) {			register float rpfi = rpf[i];			register float ufi  = uf[i];			uf[i] = sav;			temp  = rpfi * di + ufi;			di   += rpfi * ufi;			sav   = temp;		}		*s = di;	}	for (i = 0; i < 8; ++i) u[i] = uf[i];}#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),	struct gsm_state * S,	register word	* rrp,	/* [0..7]	IN	*/	register int	k,	/* k_end - k_start	*/	register word	* wt,	/* [0..k-1]	IN	*/	register word	* sr	/* [0..k-1]	OUT	*/){	register word		* v = S->v;	register int		i;	register word		sri, tmp1, tmp2;	register longword	ltmp;	/* for GSM_ADD  & GSM_SUB */	while (k--) {		sri = *wt++;		for (i = 8; i--;) {			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );			 */			tmp1 = rrp[i];			tmp2 = v[i];			tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD				? MAX_WORD				: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2					     + 16384) >> 15)) ;			sri  = GSM_SUB( sri, tmp2 );			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );			 */			tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD				? MAX_WORD				: 0x0FFFF & (( (longword)tmp1 * (longword)sri					     + 16384) >> 15)) ;			v[i+1] = GSM_ADD( v[i], tmp1);		}		*sr++ = v[0] = sri;	}}#if defined(FAST) && defined(USE_FLOAT_MUL)static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),	struct gsm_state * S,	register word	* rrp,	/* [0..7]	IN	*/	register int	k,	/* k_end - k_start	*/	register word	* wt,	/* [0..k-1]	IN	*/	register word	* sr	/* [0..k-1]	OUT	*/){	register word		* v = S->v;	register int		i;	float va[9], rrpa[8];	register float scalef = 3.0517578125e-5, temp;	for (i = 0; i < 8; ++i) {		va[i]   = v[i];		rrpa[i] = (float)rrp[i] * scalef;	}	while (k--) {		register float sri = *wt++;		for (i = 8; i--;) {			sri -= rrpa[i] * va[i];			if     (sri < -32768.) sri = -32768.;			else if (sri > 32767.) sri =  32767.;			temp = va[i] + rrpa[i] * sri;			if     (temp < -32768.) temp = -32768.;			else if (temp > 32767.) temp =  32767.;			va[i+1] = temp;		}		*sr++ = va[0] = sri;	}	for (i = 0; i < 9; ++i) v[i] = va[i];}#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),	struct gsm_state * S,	word	* LARc,		/* coded log area ratio [0..7]  IN	*/	word	* s		/* signal [0..159]		IN/OUT	*/){	word		* LARpp_j	= S->LARpp[ S->j      ];	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];	word		LARp[8];#undef	FILTER#if 	defined(FAST) && defined(USE_FLOAT_MUL)# 	define	FILTER 	(* (S->fast			\			   ? Fast_Short_term_analysis_filtering	\		    	   : Short_term_analysis_filtering	))#else# 	define	FILTER	Short_term_analysis_filtering#endif	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );	LARp_to_rp( LARp );	FILTER( S, LARp, 13, s);	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 14, s + 13);	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 13, s + 27);	Coefficients_40_159( LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 120, s + 40);}void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),	struct gsm_state * S,	word	* LARcr,	/* received log area ratios [0..7] IN  */	word	* wt,		/* received d [0..159]		   IN  */	word	* s		/* signal   s [0..159]		  OUT  */){	word		* LARpp_j	= S->LARpp[ S->j     ];	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];	word		LARp[8];#undef	FILTER#if 	defined(FAST) && defined(USE_FLOAT_MUL)# 	define	FILTER 	(* (S->fast			\			   ? Fast_Short_term_synthesis_filtering	\		    	   : Short_term_synthesis_filtering	))#else#	define	FILTER	Short_term_synthesis_filtering#endif	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );	LARp_to_rp( LARp );	FILTER( S, LARp, 13, wt, s );	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 14, wt + 13, s + 13 );	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);	LARp_to_rp( LARp );	FILTER( S, LARp, 13, wt + 27, s + 27 );	Coefficients_40_159( LARpp_j, LARp );	LARp_to_rp( LARp );	FILTER(S, LARp, 120, wt + 40, s + 40);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -