📄 svm_learn_main.c
字号:
/***********************************************************************/
/* */
/* svm_learn_main.c */
/* */
/* Command line interface to the learning module of the */
/* Support Vector Machine. */
/* */
/* Author: Thorsten Joachims */
/* Date: 02.07.02 */
/* */
/* Copyright (c) 2000 Thorsten Joachims - All rights reserved */
/* */
/* This software is available for non-commercial use only. It must */
/* not be modified and distributed without prior permission of the */
/* author. The author is not responsible for implications from the */
/* use of this software. */
/* */
/***********************************************************************/
/* uncomment, if you want to use svm-learn out of C++ */
/* extern "C" { */
# include "svm_common.h"
# include "svm_learn.h"
/*}*/
char docfile[200]; /* file with training examples */
char modelfile[200]; /* file for resulting classifier */
char restartfile[200]; /* file with initial alphas */
void read_input_parameters(int, char **, char *, char *, char *, long *,
LEARN_PARM *, KERNEL_PARM *);
void wait_any_key();
void print_help();
int main (int argc, char* argv[])
{
DOC **docs; /* training examples */
long totwords,totdoc,i;
double *target;
double *alpha_in=NULL;
KERNEL_CACHE *kernel_cache;
LEARN_PARM learn_parm;
KERNEL_PARM kernel_parm;
MODEL *model=(MODEL *)my_malloc(sizeof(MODEL));
read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity,
&learn_parm,&kernel_parm);
read_documents(docfile,&docs,&target,&totwords,&totdoc);
if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc);
FILE * dump = NULL;
char* traindump = (char *) my_malloc(sizeof(char)*25);
sprintf(traindump,"maintraindump%d.dat",1);
int lengthcnt = 20;
int namecnt=2;
while((dump = fopen(traindump,"r+")) != NULL) {
fclose(dump);
printf("traindump is already there: %s\n",traindump);
if (strlen(traindump) >= lengthcnt) {
free(traindump);
lengthcnt =+ 20;
traindump = (char *) my_malloc(sizeof(char)*lengthcnt);
}
sprintf(traindump,"maintraindump%d.dat",namecnt++);
}
printf("------------------------------ Writing traindump to file %s",traindump);
if ((dump = fopen(traindump,"w")) == NULL) {
perror("Doesnt work!\n");
exit(1);
}
printf("\n|||||||||||||||||||||||||||||||||| dumping ..\n");
long int z = 0;
long int y = 0;
fprintf(dump,"totaldocuments: %ld \n",totdoc);
while(z<(totdoc)) {
fprintf(dump,"(%ld) (QID: %ld) (CF: %.16g) (SID: %ld) ",docs[z]->docnum,docs[z]->queryid,docs[z]->costfactor,docs[z]->slackid);
SVECTOR *v = docs[z]->fvec;
fprintf(dump,"(NORM:%.32g) (UD:%s) (KID:%ld) (VL:%p) (F:%.32g) %.32g ",v->twonorm_sq,(v->userdefined == NULL ? "" : v->userdefined),v->kernel_id,v->next,v->factor,target[z]);
if (v != NULL && v->words != NULL) {
while ((v->words[y]).wnum) {
fprintf(dump,"%ld:%.32g ",(v->words[y]).wnum, (v->words[y]).weight);
y++;
}
} else
fprintf(dump, "NULL WORTE\n");
fprintf(dump,"\n");
y=0;
z++;
}
fprintf(dump,"---------------------------------------------------\n");
fprintf(dump,"kernel_type: %ld\n",kernel_parm.kernel_type);
fprintf(dump,"poly_degree: %ld\n",kernel_parm.poly_degree);
fprintf(dump,"rbf_gamma: %.32g\n",kernel_parm.rbf_gamma);
fprintf(dump,"coef_lin: %.32g\n",kernel_parm.coef_lin);
fprintf(dump,"coef_const: %.32g\n",kernel_parm.coef_const);
fprintf(dump,"custom: %s\n",kernel_parm.custom);
fprintf(dump,"type: %ld\n",learn_parm.type);
fprintf(dump,"svm_c: %.32g\n",learn_parm.svm_c);
fprintf(dump,"eps: %.32g\n",learn_parm.eps);
fprintf(dump,"svm_costratio: %.32g\n",learn_parm.svm_costratio);
fprintf(dump,"transduction_posratio: %.32g\n",learn_parm.transduction_posratio);
fprintf(dump,"biased_hyperplane: %ld\n",learn_parm.biased_hyperplane);
fprintf(dump,"svm_maxqpsize: %ld\n",learn_parm.svm_maxqpsize);
fprintf(dump,"svm_newvarsinqp: %ld\n",learn_parm.svm_newvarsinqp);
fprintf(dump,"epsilon_crit: %.32g\n",learn_parm.epsilon_crit);
fprintf(dump,"epsilon_shrink: %.32g\n",learn_parm.epsilon_shrink);
fprintf(dump,"svm_iter_to_shrink: %ld\n",learn_parm.svm_iter_to_shrink);
fprintf(dump,"remove_inconsistent: %ld\n",learn_parm.remove_inconsistent);
fprintf(dump,"skip_final_opt_check: %ld\n",learn_parm.skip_final_opt_check);
fprintf(dump,"compute_loo: %ld\n",learn_parm.compute_loo);
fprintf(dump,"rho: %.32g\n",learn_parm.rho);
fprintf(dump,"xa_depth: %ld\n",learn_parm.xa_depth);
fprintf(dump,"predfile: %s\n",learn_parm.predfile);
fprintf(dump,"alphafile: %s\n",learn_parm.alphafile);
fprintf(dump,"epsilon_const: %.32g\n",learn_parm.epsilon_const);
fprintf(dump,"epsilon_a: %.32g\n",learn_parm.epsilon_a);
fprintf(dump,"opt_precision: %.32g\n",learn_parm.opt_precision);
fprintf(dump,"svm_c_steps: %ld\n",learn_parm.svm_c_steps);
fprintf(dump,"svm_c_factor: %.32g\n",learn_parm.svm_c_factor);
fprintf(dump,"svm_costratio_unlab: %.32g\n",learn_parm.svm_costratio_unlab);
fprintf(dump,"svm_unlabbound: %.32g\n",learn_parm.svm_unlabbound);
if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */
kernel_cache=NULL;
}
else {
/* Always get a new kernel cache. It is not possible to use the
same cache for two different training runs */
kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size);
}
if(learn_parm.type == CLASSIFICATION) {
svm_learn_classification(docs,target,totdoc,totwords,&learn_parm,
&kernel_parm,kernel_cache,model,alpha_in);
}
else if(learn_parm.type == REGRESSION) {
svm_learn_regression(docs,target,totdoc,totwords,&learn_parm,
&kernel_parm,&kernel_cache,model);
}
else if(learn_parm.type == RANKING) {
svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm,
&kernel_parm,&kernel_cache,model);
}
else if(learn_parm.type == OPTIMIZATION) {
svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm,
&kernel_parm,kernel_cache,model,alpha_in);
}
fprintf(dump,"totwords: %ld\n",learn_parm.totwords);
printf("|||||||||||||||||||||||||||||||||| z: %ld, totdoc: %ld\n",z,totdoc);
fclose(dump);
if(kernel_cache) {
/* Free the memory used for the cache. */
kernel_cache_cleanup(kernel_cache);
}
/* Warning: The model contains references to the original data 'docs'.
If you want to free the original data, and only keep the model, you
have to make a deep copy of 'model'. */
/* deep_copy_of_model=copy_model(model); */
write_model(modelfile,model);
free(alpha_in);
free_model(model,0);
for(i=0;i<totdoc;i++)
free_example(docs[i],1);
free(docs);
free(target);
return(0);
}
/*---------------------------------------------------------------------------*/
void read_input_parameters(int argc,char *argv[],char *docfile,char *modelfile,
char *restartfile,long *verbosity,
LEARN_PARM *learn_parm,KERNEL_PARM *kernel_parm)
{
long i;
char type[100];
/* set default */
strcpy (modelfile, "svm_model");
strcpy (learn_parm->predfile, "trans_predictions");
strcpy (learn_parm->alphafile, "");
strcpy (restartfile, "");
(*verbosity)=1;
learn_parm->biased_hyperplane=1;
learn_parm->sharedslack=0;
learn_parm->remove_inconsistent=0;
learn_parm->skip_final_opt_check=0;
learn_parm->svm_maxqpsize=10;
learn_parm->svm_newvarsinqp=0;
learn_parm->svm_iter_to_shrink=-9999;
learn_parm->maxiter=100000;
learn_parm->kernel_cache_size=40;
learn_parm->svm_c=0.0;
learn_parm->eps=0.1;
learn_parm->transduction_posratio=-1.0;
learn_parm->svm_costratio=1.0;
learn_parm->svm_costratio_unlab=1.0;
learn_parm->svm_unlabbound=1E-5;
learn_parm->epsilon_crit=0.001;
learn_parm->epsilon_a=1E-15;
learn_parm->compute_loo=0;
learn_parm->rho=1.0;
learn_parm->xa_depth=0;
kernel_parm->kernel_type=0;
kernel_parm->poly_degree=3;
kernel_parm->rbf_gamma=1.0;
kernel_parm->coef_lin=1;
kernel_parm->coef_const=1;
strcpy(kernel_parm->custom,"empty");
strcpy(type,"c");
for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
switch ((argv[i])[1])
{
case '?': print_help(); exit(0);
case 'z': i++; strcpy(type,argv[i]); break;
case 'v': i++; (*verbosity)=atol(argv[i]); break;
case 'b': i++; learn_parm->biased_hyperplane=atol(argv[i]); break;
case 'i': i++; learn_parm->remove_inconsistent=atol(argv[i]); break;
case 'f': i++; learn_parm->skip_final_opt_check=!atol(argv[i]); break;
case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break;
case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -