📄 learnparam.html
字号:
<FONT color="green">127</FONT> <a name="line.127"></a>
<FONT color="green">128</FONT> public double svm_costratio_unlab;<a name="line.128"></a>
<FONT color="green">129</FONT> <a name="line.129"></a>
<FONT color="green">130</FONT> /* You probably do not want to touch the following: */<a name="line.130"></a>
<FONT color="green">131</FONT> <a name="line.131"></a>
<FONT color="green">132</FONT> /** Iterations h after which an example can be removed by shrinking. */<a name="line.132"></a>
<FONT color="green">133</FONT> public long svm_iter_to_shrink;<a name="line.133"></a>
<FONT color="green">134</FONT> <a name="line.134"></a>
<FONT color="green">135</FONT> /** Size q of working set. */<a name="line.135"></a>
<FONT color="green">136</FONT> public long svm_maxqpsize;<a name="line.136"></a>
<FONT color="green">137</FONT> <a name="line.137"></a>
<FONT color="green">138</FONT> /** New variables to enter the working set in each iteration. */<a name="line.138"></a>
<FONT color="green">139</FONT> public long svm_newvarsinqp;<a name="line.139"></a>
<FONT color="green">140</FONT> <a name="line.140"></a>
<FONT color="green">141</FONT> /* The following are only for internal use: */<a name="line.141"></a>
<FONT color="green">142</FONT> <a name="line.142"></a>
<FONT color="green">143</FONT> public double svm_unlabbound;<a name="line.143"></a>
<FONT color="green">144</FONT> <a name="line.144"></a>
<FONT color="green">145</FONT> /** Total amount of features. */<a name="line.145"></a>
<FONT color="green">146</FONT> public long totwords;<a name="line.146"></a>
<FONT color="green">147</FONT> <a name="line.147"></a>
<FONT color="green">148</FONT> /** Fraction of unlabeled examples to be classified as positives. */<a name="line.148"></a>
<FONT color="green">149</FONT> public double transduction_posratio;<a name="line.149"></a>
<FONT color="green">150</FONT> <a name="line.150"></a>
<FONT color="green">151</FONT> /** Selects between CLASSIFICATION, REGRESSION, RANKING, or OPTIMIZATION mode. */<a name="line.151"></a>
<FONT color="green">152</FONT> public long type;<a name="line.152"></a>
<FONT color="green">153</FONT> <a name="line.153"></a>
<FONT color="green">154</FONT> /** The level of SVM-light debugging infos. */<a name="line.154"></a>
<FONT color="green">155</FONT> public int verbosity;<a name="line.155"></a>
<FONT color="green">156</FONT> <a name="line.156"></a>
<FONT color="green">157</FONT> /**<a name="line.157"></a>
<FONT color="green">158</FONT> * Parameter in xi/alpha-estimates upper bounding the number of SV the current<a name="line.158"></a>
<FONT color="green">159</FONT> * alpha_t is distributed over.<a name="line.159"></a>
<FONT color="green">160</FONT> */<a name="line.160"></a>
<FONT color="green">161</FONT> public long xa_depth;<a name="line.161"></a>
<FONT color="green">162</FONT> <a name="line.162"></a>
<FONT color="green">163</FONT> /** Initializes the learning parameters with the default SVM-light values. */<a name="line.163"></a>
<FONT color="green">164</FONT> public LearnParam() {<a name="line.164"></a>
<FONT color="green">165</FONT> this.verbosity = 0;<a name="line.165"></a>
<FONT color="green">166</FONT> this.type = CLASSIFICATION;<a name="line.166"></a>
<FONT color="green">167</FONT> this.predfile = new String("trans_predictions");<a name="line.167"></a>
<FONT color="green">168</FONT> this.alphafile = new String("");<a name="line.168"></a>
<FONT color="green">169</FONT> this.biased_hyperplane = 1;<a name="line.169"></a>
<FONT color="green">170</FONT> this.sharedslack = 0;<a name="line.170"></a>
<FONT color="green">171</FONT> this.remove_inconsistent = 0;<a name="line.171"></a>
<FONT color="green">172</FONT> this.skip_final_opt_check = 0;<a name="line.172"></a>
<FONT color="green">173</FONT> this.svm_maxqpsize = 10;<a name="line.173"></a>
<FONT color="green">174</FONT> this.svm_newvarsinqp = 0;<a name="line.174"></a>
<FONT color="green">175</FONT> this.svm_iter_to_shrink = -9999;<a name="line.175"></a>
<FONT color="green">176</FONT> this.maxiter = 100000;<a name="line.176"></a>
<FONT color="green">177</FONT> this.kernel_cache_size = 40;<a name="line.177"></a>
<FONT color="green">178</FONT> this.svm_c = 0.0;<a name="line.178"></a>
<FONT color="green">179</FONT> this.eps = 0.1;<a name="line.179"></a>
<FONT color="green">180</FONT> this.transduction_posratio = -1.0;<a name="line.180"></a>
<FONT color="green">181</FONT> this.svm_costratio = 1.0;<a name="line.181"></a>
<FONT color="green">182</FONT> this.svm_costratio_unlab = 1.0;<a name="line.182"></a>
<FONT color="green">183</FONT> this.svm_unlabbound = 1E-5;<a name="line.183"></a>
<FONT color="green">184</FONT> this.epsilon_crit = 0.001;<a name="line.184"></a>
<FONT color="green">185</FONT> this.epsilon_a = 1E-15;<a name="line.185"></a>
<FONT color="green">186</FONT> this.compute_loo = 0;<a name="line.186"></a>
<FONT color="green">187</FONT> this.rho = 1.0;<a name="line.187"></a>
<FONT color="green">188</FONT> this.xa_depth = 0;<a name="line.188"></a>
<FONT color="green">189</FONT> }<a name="line.189"></a>
<FONT color="green">190</FONT> }<a name="line.190"></a>
</PRE>
</BODY>
</HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -