⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable.h

📁 arm平台上的uclinux系统全部源代码
💻 H
字号:
/* * linux/include/asm-arm/proc-armv/pgtable.h * * Copyright (C) 1995, 1996, 1997 Russell King * * 12-01-1997	RMK	Altered flushing routines to use function pointers *			now possible to combine ARM6, ARM7 and StrongARM versions. */#ifndef __ASM_PROC_PGTABLE_H#define __ASM_PROC_PGTABLE_H#include <asm/arch/mmu.h>#define LIBRARY_TEXT_START 0x0c000000/* * Cache flushing... */#define flush_cache_all()						\	processor.u.armv3v4._flush_cache_all()#define flush_cache_mm(_mm)						\	do {								\		if ((_mm) == current->mm)				\			processor.u.armv3v4._flush_cache_all();		\	} while (0)#define flush_cache_range(_mm,_start,_end)				\	do {								\		if ((_mm) == current->mm)				\			processor.u.armv3v4._flush_cache_area		\				((_start), (_end), 1);			\	} while (0)#define flush_cache_page(_vma,_vmaddr)					\	do {								\		if ((_vma)->vm_mm == current->mm)			\			processor.u.armv3v4._flush_cache_area		\				((_vmaddr), (_vmaddr) + PAGE_SIZE,	\				 ((_vma)->vm_flags & VM_EXEC) ? 1 : 0);	\	} while (0)/* * We don't have a mem map cache... */#define update_mm_cache_all()			do { } while (0)#define update_mm_cache_task(tsk)		do { } while (0)#define update_mm_cache_mm(mm)			do { } while (0)#define update_mm_cache_mm_addr(mm,addr,pte)	do { } while (0)/* * This flushes back any buffered write data.  We have to clean and flush the entries * in the cache for this page.  Is it necessary to invalidate the I-cache? */#define flush_page_to_ram(_page)					\	processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);/* * Make the page uncacheable (must flush page beforehand). */#define uncache_page(_page)						\	processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);/* * TLB flushing: * *  - flush_tlb() flushes the current mm struct TLBs *  - flush_tlb_all() flushes all processes TLBs *  - flush_tlb_mm(mm) flushes the specified mm context TLB's *  - flush_tlb_page(vma, vmaddr) flushes one page *  - flush_tlb_range(mm, start, end) flushes a range of pages * * GCC uses conditional instructions, and expects the assembler code to do so as well. * * We drain the write buffer in here to ensure that the page tables in ram * are really up to date.  It is more efficient to do this here... */#define flush_tlb() flush_tlb_all()#define flush_tlb_all()								\	processor.u.armv3v4._flush_tlb_all()#define flush_tlb_mm(_mm)							\	do {									\		if ((_mm) == current->mm)					\			processor.u.armv3v4._flush_tlb_all();			\	} while (0)#define flush_tlb_range(_mm,_start,_end)					\	do {									\		if ((_mm) == current->mm)					\			processor.u.armv3v4._flush_tlb_area			\				((_start), (_end), 1);				\	} while (0)#define flush_tlb_page(_vma,_vmaddr)						\	do {									\		if ((_vma)->vm_mm == current->mm)				\			processor.u.armv3v4._flush_tlb_area			\				((_vmaddr), (_vmaddr) + PAGE_SIZE,		\				 ((_vma)->vm_flags & VM_EXEC) ? 1 : 0);		\	} while (0)/* * Since the page tables are in cached memory, we need to flush the dirty * data cached entries back before we flush the tlb...  This is also useful * to flush out the SWI instruction for signal handlers... */#define __flush_entry_to_ram(entry)						\	processor.u.armv3v4._flush_cache_entry((unsigned long)(entry))#define __flush_pte_to_ram(entry)						\	processor.u.armv3v4._flush_cache_pte((unsigned long)(entry))/* PMD_SHIFT determines the size of the area a second-level page table can map */#define PMD_SHIFT       20#define PMD_SIZE        (1UL << PMD_SHIFT)#define PMD_MASK        (~(PMD_SIZE-1))/* PGDIR_SHIFT determines what a third-level page table entry can map */#define PGDIR_SHIFT     20#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)#define PGDIR_MASK      (~(PGDIR_SIZE-1))/* * entries per page directory level: the sa110 is two-level, so * we don't really have any PMD directory physically. */#define PTRS_PER_PTE    256#define PTRS_PER_PMD    1#define PTRS_PER_PGD    4096/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts.  That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET	  (8*1024*1024)#define VMALLOC_START	  ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))#define VMALLOC_VMADDR(x) ((unsigned long)(x))/* PMD types (actually level 1 descriptor) */#define PMD_TYPE_MASK		0x0003#define PMD_TYPE_FAULT		0x0000#define PMD_TYPE_TABLE		0x0001#define PMD_TYPE_SECT		0x0002#define PMD_UPDATABLE		0x0010#define PMD_SECT_CACHEABLE	0x0008#define PMD_SECT_BUFFERABLE	0x0004#define PMD_SECT_AP_WRITE	0x0400#define PMD_SECT_AP_READ	0x0800#define PMD_DOMAIN(x)		((x) << 5)/* PTE types (actually level 2 descriptor) */#define PTE_TYPE_MASK	0x0003#define PTE_TYPE_FAULT	0x0000#define PTE_TYPE_LARGE	0x0001#define PTE_TYPE_SMALL	0x0002#define PTE_AP_READ	0x0aa0#define PTE_AP_WRITE	0x0550#define PTE_CACHEABLE	0x0008#define PTE_BUFFERABLE	0x0004/* Domains */#define DOMAIN_KERNEL	0#define _PAGE_CHG_MASK  (0xfffff00c | PTE_TYPE_MASK)/* * We define the bits in the page tables as follows: *  PTE_BUFFERABLE	page is dirty *  PTE_AP_WRITE	page is writable *  PTE_AP_READ		page is a young (unsetting this causes faults for any access) * * Any page that is mapped in is assumed to be readable... */#define PAGE_NONE       __pgprot(PTE_TYPE_SMALL)#define PAGE_SHARED     __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ | PTE_AP_WRITE)#define PAGE_COPY       __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ)#define PAGE_READONLY   __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ)#define PAGE_KERNEL     __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_BUFFERABLE | PTE_AP_WRITE)#define _PAGE_TABLE	(PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_KERNEL))/* * The arm can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */#define __P000  PAGE_NONE#define __P001  PAGE_READONLY#define __P010  PAGE_COPY#define __P011  PAGE_COPY#define __P100  PAGE_READONLY#define __P101  PAGE_READONLY#define __P110  PAGE_COPY#define __P111  PAGE_COPY#define __S000  PAGE_NONE#define __S001  PAGE_READONLY#define __S010  PAGE_SHARED#define __S011  PAGE_SHARED#define __S100  PAGE_READONLY#define __S101  PAGE_READONLY#define __S110  PAGE_SHARED#define __S111  PAGE_SHARED#undef TEST_VERIFY_AREA/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern pte_t __bad_page(void);extern pte_t * __bad_pagetable(void);extern unsigned long *empty_zero_page;#define BAD_PAGETABLE __bad_pagetable()#define BAD_PAGE __bad_page()#define ZERO_PAGE ((unsigned long) empty_zero_page)/* number of bits that fit into a memory pointer */#define BYTES_PER_PTR			(sizeof(unsigned long))#define BITS_PER_PTR                    (8*BYTES_PER_PTR)/* to align the pointer to a pointer address */#define PTR_MASK                        (~(sizeof(void*)-1))/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */#define SIZEOF_PTR_LOG2                 2/* to find an entry in a page-table */#define PAGE_PTR(address) \((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)/* to set the page-dir */#define SET_PAGE_DIR(tsk,pgdir)					\do {								\	tsk->tss.memmap = __virt_to_phys((unsigned long)pgdir);	\	if ((tsk) == current)					\		__asm__ __volatile__(				\		"mcr%?	p15, 0, %0, c2, c0, 0\n"		\		: : "r" (tsk->tss.memmap));			\} while (0)extern __inline__ int pte_none(pte_t pte){	return !pte_val(pte);}#define pte_clear(ptep)	set_pte(ptep, __pte(0))extern __inline__ int pte_present(pte_t pte){	switch (pte_val(pte) & PTE_TYPE_MASK) {	case PTE_TYPE_LARGE:	case PTE_TYPE_SMALL:		return 1;	default:		return 0;	}}extern __inline__ int pmd_none(pmd_t pmd){	return !pmd_val(pmd);}#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))extern __inline__ int pmd_bad(pmd_t pmd){	switch (pmd_val(pmd) & PMD_TYPE_MASK) {	case PMD_TYPE_FAULT:	case PMD_TYPE_TABLE:		return 0;	default:		return 1;	}}extern __inline__ int pmd_present(pmd_t pmd){	switch (pmd_val(pmd) & PMD_TYPE_MASK) {	case PMD_TYPE_TABLE:		return 1;	default:		return 0;	}}/* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */#define pgd_none(pgd)		(0)#define pgd_bad(pgd)		(0)#define pgd_present(pgd)	(1)#define pgd_clear(pgdp)/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */#define pte_read(pte)		(1)#define pte_exec(pte)		(1)extern __inline__ int pte_write(pte_t pte){	return pte_val(pte) & PTE_AP_WRITE;}extern __inline__ int pte_cacheable(pte_t pte){	return pte_val(pte) & PTE_CACHEABLE;}extern __inline__ int pte_dirty(pte_t pte){	return pte_val(pte) & PTE_BUFFERABLE;}extern __inline__ int pte_young(pte_t pte){	return pte_val(pte) & PTE_AP_READ;}extern __inline__ pte_t pte_wrprotect(pte_t pte){	pte_val(pte) &= ~PTE_AP_WRITE;	return pte;}extern __inline__ pte_t pte_nocache(pte_t pte){	pte_val(pte) &= ~PTE_CACHEABLE;	return pte;}extern __inline__ pte_t pte_mkclean(pte_t pte){	pte_val(pte) &= ~PTE_BUFFERABLE;	return pte;}extern __inline__ pte_t pte_mkold(pte_t pte){	pte_val(pte) &= ~PTE_AP_READ;	return pte;}extern __inline__ pte_t pte_mkwrite(pte_t pte){	pte_val(pte) |= PTE_AP_WRITE;	return pte;}extern __inline__ pte_t pte_mkdirty(pte_t pte){	pte_val(pte) |= PTE_BUFFERABLE;	return pte;}extern __inline__ pte_t pte_mkyoung(pte_t pte){	pte_val(pte) |= PTE_AP_READ;	return pte;}/* * The following are unable to be implemented on this MMU */#if 0extern __inline__ pte_t pte_rdprotect(pte_t pte){	pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);	return pte;}extern __inline__ pte_t pte_exprotect(pte_t pte){	pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);	return pte;}extern __inline__ pte_t pte_mkread(pte_t pte){	pte_val(pte) |= PTE_CACHEABLE;	return pte;}extern __inline__ pte_t pte_mkexec(pte_t pte){	pte_val(pte) |= PTE_CACHEABLE;	return pte;}#endif/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot){	pte_t pte;	pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);	return pte;}extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot){	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);	return pte;}extern __inline__ void set_pte(pte_t *pteptr, pte_t pteval){	*pteptr = pteval;	__flush_pte_to_ram(pteptr);}extern __inline__ unsigned long pte_page(pte_t pte){	return __phys_to_virt(pte_val(pte) & PAGE_MASK);}extern __inline__ pmd_t mk_pmd(pte_t *ptep){	pmd_t pmd;	pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_TABLE;	return pmd;}#if 1#define set_pmd(pmdp,pmd) processor.u.armv3v4._set_pmd(pmdp,pmd)#elseextern __inline__ void set_pmd(pmd_t *pmdp, pmd_t pmd){	*pmdp = pmd;	__flush_pte_to_ram(pmdp);}#endifextern __inline__ unsigned long pmd_page(pmd_t pmd){	return __phys_to_virt(pmd_val(pmd) & 0xfffffc00);}/* to find an entry in a page-table-directory */extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address){        return mm->pgd + (address >> PGDIR_SHIFT);}/* Find an entry in the second-level page table.. */#define pmd_offset(dir, address) ((pmd_t *)(dir))/* Find an entry in the third-level page table.. */extern __inline__ pte_t * pte_offset(pmd_t * dir, unsigned long address){        return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));}extern unsigned long get_small_page(int priority);extern void free_small_page(unsigned long page);/* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */extern __inline__ void pte_free_kernel(pte_t * pte){	free_small_page((unsigned long) pte);}extern const char bad_pmd_string[];extern __inline__ pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address){	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);	if (pmd_none(*pmd)) {		pte_t *page = (pte_t *) get_small_page(GFP_KERNEL);		if (pmd_none(*pmd)) {			if (page) {				memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);				set_pmd(pmd, mk_pmd(page));				return page + address;			}			set_pmd(pmd, mk_pmd(BAD_PAGETABLE));			return NULL;		}		free_small_page((unsigned long) page);	}	if (pmd_bad(*pmd)) {		printk(bad_pmd_string, pmd_val(*pmd));		set_pmd(pmd, mk_pmd(BAD_PAGETABLE));		return NULL;	}	return (pte_t *) pmd_page(*pmd) + address;}/* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */#define pmd_free_kernel(pmdp) pmd_val(*(pmdp)) = 0;#define pmd_alloc_kernel(pgdp, address) ((pmd_t *)(pgdp))extern __inline__ void pte_free(pte_t * pte){	free_small_page((unsigned long) pte);}extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address){	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);	if (pmd_none(*pmd)) {		pte_t *page = (pte_t *) get_small_page(GFP_KERNEL);		if (pmd_none(*pmd)) {			if (page) {				memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);				set_pmd(pmd, mk_pmd(page));				return page + address;			}			set_pmd(pmd, mk_pmd(BAD_PAGETABLE));			return NULL;		}		free_small_page ((unsigned long) page);	}	if (pmd_bad(*pmd)) {		printk(bad_pmd_string, pmd_val(*pmd));		set_pmd(pmd, mk_pmd(BAD_PAGETABLE));		return NULL;	}	return (pte_t *) pmd_page(*pmd) + address;}/* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */#define pmd_free(pmdp) pmd_val(*(pmdp)) = 0;#define pmd_alloc(pgdp, address) ((pmd_t *)(pgdp))/* * Free a page directory.  Takes the virtual address. */extern __inline__ void pgd_free(pgd_t * pgd){	free_pages((unsigned long) pgd, 2);}/* * Allocate a new page directory.  Return the virtual address of it. */extern __inline__ pgd_t * pgd_alloc(void){	unsigned long pgd;	/*	 * need to get a 16k page for level 1	 */	pgd = __get_free_pages(GFP_KERNEL,2,0);	if (pgd)		memzero ((void *)pgd, PTRS_PER_PGD * BYTES_PER_PTR);	return (pgd_t *)pgd;}extern pgd_t swapper_pg_dir[PTRS_PER_PGD];/* * The sa110 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */extern __inline__ void update_mmu_cache(struct vm_area_struct * vma,	unsigned long address, pte_t pte){}#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)#define SWP_OFFSET(entry) ((entry) >> 9)#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))#endif /* __ASM_PROC_PAGE_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -