⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable.h

📁 arm平台上的uclinux系统全部源代码
💻 H
字号:
/* * linux/include/asm-arm/proc-armo/pgtable.h * * Copyright (C) 1995, 1996 Russell King * Modified 18/19-Oct-1997 for two-level page table */#ifndef __ASM_PROC_PGTABLE_H#define __ASM_PROC_PGTABLE_H#include <asm/arch/mmu.h>#define LIBRARY_TEXT_START 0x0c000000/* * Cache flushing... */#define flush_cache_all()			do { } while (0)#define flush_cache_mm(mm)			do { } while (0)#define flush_cache_range(mm,start,end)		do { } while (0)#define flush_cache_page(vma,vmaddr)		do { } while (0)#define flush_page_to_ram(page)			do { } while (0)/* * TLB flushing: * *  - flush_tlb() flushes the current mm struct TLBs *  - flush_tlb_all() flushes all processes TLBs *  - flush_tlb_mm(mm) flushes the specified mm context TLB's *  - flush_tlb_page(vma, vmaddr) flushes one page *  - flush_tlb_range(mm, start, end) flushes a range of pages */#define flush_tlb()			do { } while (0)#define flush_tlb_all()			do { } while (0)#define flush_tlb_mm(mm)		do { } while (0)#define flush_tlb_range(mm, start, end) do { } while (0)#define flush_tlb_page(vma, vmaddr)	do { } while (0)/* * We have a mem map cache... */extern __inline__ void update_mm_cache_all(void){	struct task_struct *p;	p = &init_task;	do {		processor.u.armv2._update_map(p);		p = p->next_task;	} while (p != &init_task);	processor.u.armv2._remap_memc (current);}extern __inline__ void update_mm_cache_task(struct task_struct *tsk){	processor.u.armv2._update_map(tsk);	if (tsk == current)		processor.u.armv2._remap_memc (tsk);}extern __inline__ void update_mm_cache_mm(struct mm_struct *mm){	struct task_struct *p;	p = &init_task;	do {		if (p->mm == mm)			processor.u.armv2._update_map(p);		p = p->next_task;	} while (p != &init_task);	if (current->mm == mm)		processor.u.armv2._remap_memc (current);}extern __inline__ void update_mm_cache_mm_addr(struct mm_struct *mm, unsigned long addr, pte_t pte){	struct task_struct *p;	p = &init_task;	do {		if (p->mm == mm)			processor.u.armv2._update_mmu_cache(p, addr, pte);		p = p->next_task;	} while (p != &init_task);	if (current->mm == mm)		processor.u.armv2._remap_memc (current);}#define __flush_entry_to_ram(entry)/* Certain architectures need to do special things when pte's * within a page table are directly modified.  Thus, the following * hook is made available. *//* PMD_SHIFT determines the size of the area a second-level page table can map */#define PMD_SHIFT       20#define PMD_SIZE        (1UL << PMD_SHIFT)#define PMD_MASK        (~(PMD_SIZE-1))/* PGDIR_SHIFT determines what a third-level page table entry can map */#define PGDIR_SHIFT     20#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)#define PGDIR_MASK      (~(PGDIR_SIZE-1))/* * entries per page directory level: the arm3 is one-level, so * we don't really have any PMD or PTE directory physically. * * 18-Oct-1997 RMK Now two-level (32x32) */#define PTRS_PER_PTE    32#define PTRS_PER_PMD    1#define PTRS_PER_PGD    32/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts.  That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_START	0x01a00000#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define _PAGE_PRESENT		0x01#define _PAGE_READONLY		0x02#define _PAGE_NOT_USER		0x04#define _PAGE_OLD		0x08#define _PAGE_CLEAN		0x10#define _PAGE_TABLE     (_PAGE_PRESENT)#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_OLD | _PAGE_CLEAN)/*                               -- present --   -- !dirty --  --- !write ---   ---- !user --- */#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY | _PAGE_NOT_USER)#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_CLEAN                                  )#define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY                 )#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY                 )#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT                                | _PAGE_NOT_USER)/* * The arm can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */#define __P000  PAGE_NONE#define __P001  PAGE_READONLY#define __P010  PAGE_COPY#define __P011  PAGE_COPY#define __P100  PAGE_READONLY#define __P101  PAGE_READONLY#define __P110  PAGE_COPY#define __P111  PAGE_COPY#define __S000  PAGE_NONE#define __S001  PAGE_READONLY#define __S010  PAGE_SHARED#define __S011  PAGE_SHARED#define __S100  PAGE_READONLY#define __S101  PAGE_READONLY#define __S110  PAGE_SHARED#define __S111  PAGE_SHARED#undef TEST_VERIFY_AREAextern unsigned long *empty_zero_page;/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern pte_t __bad_page(void);extern pte_t *__bad_pagetable(void);#define BAD_PAGETABLE __bad_pagetable()#define BAD_PAGE __bad_page()#define ZERO_PAGE ((unsigned long) empty_zero_page)/* number of bits that fit into a memory pointer */#define BYTES_PER_PTR			(sizeof(unsigned long))#define BITS_PER_PTR                    (8*BYTES_PER_PTR)/* to align the pointer to a pointer address */#define PTR_MASK                        (~(sizeof(void*)-1))/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */#define SIZEOF_PTR_LOG2                 2/* to find an entry in a page-table */#define PAGE_PTR(address) \((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)/* to set the page-dir */#define SET_PAGE_DIR(tsk,pgdir)						\do {									\	tsk->tss.memmap = (unsigned long)pgdir;				\	processor.u.armv2._update_map(tsk);				\	if ((tsk) == current)						\		processor.u.armv2._remap_memc (current);		\} while (0)extern unsigned long physical_start;extern unsigned long physical_end;#define pte_none(pte)		(!pte_val(pte))#define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)#define pte_clear(ptep)		set_pte((ptep), __pte(0))#define pmd_none(pmd)		(!pmd_val(pmd))#define pmd_bad(pmd)		((pmd_val(pmd) & 0xfc000002))#define pmd_present(pmd)	(pmd_val(pmd) & _PAGE_PRESENT)#define pmd_clear(pmdp)		set_pmd(pmdp, __pmd(0))/* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */#define pgd_none(pgd)		(0)#define pgd_bad(pgd)		(0)#define pgd_present(pgd)	(1)#define pgd_clear(pgdp)/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */extern inline int pte_read(pte_t pte)           { return !(pte_val(pte) & _PAGE_NOT_USER);     }extern inline int pte_write(pte_t pte)          { return !(pte_val(pte) & _PAGE_READONLY);     }extern inline int pte_exec(pte_t pte)           { return !(pte_val(pte) & _PAGE_NOT_USER);     }extern inline int pte_dirty(pte_t pte)          { return !(pte_val(pte) & _PAGE_CLEAN);        }extern inline int pte_young(pte_t pte)          { return !(pte_val(pte) & _PAGE_OLD);          }#define pte_cacheable(pte) 1extern inline pte_t pte_nocache(pte_t pte)	{ return pte; }extern inline pte_t pte_wrprotect(pte_t pte)    { pte_val(pte) |= _PAGE_READONLY;  return pte; }extern inline pte_t pte_rdprotect(pte_t pte)    { pte_val(pte) |= _PAGE_NOT_USER;  return pte; }extern inline pte_t pte_exprotect(pte_t pte)    { pte_val(pte) |= _PAGE_NOT_USER;  return pte; }extern inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) |= _PAGE_CLEAN;     return pte; }extern inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) |= _PAGE_OLD;       return pte; }extern inline pte_t pte_mkwrite(pte_t pte)      { pte_val(pte) &= ~_PAGE_READONLY; return pte; }extern inline pte_t pte_mkread(pte_t pte)       { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }extern inline pte_t pte_mkexec(pte_t pte)       { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }extern inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) &= ~_PAGE_CLEAN;    return pte; }extern inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) &= ~_PAGE_OLD;      return pte; }/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot){	pte_t pte;	pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);	return pte;}extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot){	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);	return pte;}#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))extern __inline__ unsigned long pte_page(pte_t pte){	return __phys_to_virt(pte_val(pte) & PAGE_MASK);}extern __inline__ pmd_t mk_pmd (pte_t *ptep){	pmd_t pmd;	pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_TABLE;	return pmd;}#define set_pmd(pmdp,pmd) ((*(pmdp)) = (pmd))extern __inline__ unsigned long pmd_page(pmd_t pmd){	return __phys_to_virt(pmd_val(pmd) & ~_PAGE_TABLE);}/* to find an entry in a page-table-directory */extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address){        return mm->pgd + (address >> PGDIR_SHIFT);}/* Find an entry in the second-level page table.. */#define pmd_offset(dir, address) ((pmd_t *)(dir))/* Find an entry in the third-level page table.. */extern __inline__ pte_t * pte_offset(pmd_t *dir, unsigned long address){	return (pte_t *)pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));}/* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */#define pte_free_kernel(pte) pte_free((pte))#define pte_alloc_kernel(pmd,address) pte_alloc((pmd),(address))/* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */#define pmd_free_kernel(pmdp)#define pmd_alloc_kernel(pgd,address) ((pmd_t *)(pgd))extern __inline__ void pte_free(pte_t * pte){	extern void kfree(void *);	kfree (pte);}extern const char bad_pmd_string[];extern __inline__ pte_t *pte_alloc(pmd_t * pmd, unsigned long address){	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);	if (pmd_none (*pmd)) {		pte_t *page = (pte_t *) kmalloc (PTRS_PER_PTE * BYTES_PER_PTR, GFP_KERNEL);		if (pmd_none (*pmd)) {			if (page) {				memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);				set_pmd(pmd, mk_pmd(page));				return page + address;			}			set_pmd (pmd, mk_pmd (BAD_PAGETABLE));			return NULL;		}		kfree (page);	}	if (pmd_bad (*pmd)) {		printk(bad_pmd_string, pmd_val(*pmd));		set_pmd (pmd, mk_pmd (BAD_PAGETABLE));		return NULL;	}	return (pte_t *) pmd_page(*pmd) + address;}/* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */#define pmd_free(pmd)#define pmd_alloc(pgd,address) ((pmd_t *)(pgd))/* * Free a page directory.  Takes the virtual address. */extern __inline__ void pgd_free(pgd_t * pgd){	extern void kfree(void *);	kfree ((void *)pgd);}/* * Allocate a new page directory.  Return the virtual address of it. */extern __inline__ pgd_t * pgd_alloc(void){	pgd_t *pgd;	extern void *kmalloc(unsigned int, int);		pgd = (pgd_t *) kmalloc(PTRS_PER_PGD * BYTES_PER_PTR, GFP_KERNEL);	if (pgd)		memzero (pgd, PTRS_PER_PGD * BYTES_PER_PTR);	return pgd;}extern pgd_t swapper_pg_dir[PTRS_PER_PGD];#define update_mmu_cache(vma,address,pte)#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)#define SWP_OFFSET(entry) ((entry) >> 8)#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) <<  8))#endif /* __ASM_PROC_PAGE_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -