📄 pgtable.h
字号:
/* * linux/include/asm-arm/proc-armo/pgtable.h * * Copyright (C) 1995, 1996 Russell King * Modified 18/19-Oct-1997 for two-level page table */#ifndef __ASM_PROC_PGTABLE_H#define __ASM_PROC_PGTABLE_H#include <asm/arch/mmu.h>#define LIBRARY_TEXT_START 0x0c000000/* * Cache flushing... */#define flush_cache_all() do { } while (0)#define flush_cache_mm(mm) do { } while (0)#define flush_cache_range(mm,start,end) do { } while (0)#define flush_cache_page(vma,vmaddr) do { } while (0)#define flush_page_to_ram(page) do { } while (0)/* * TLB flushing: * * - flush_tlb() flushes the current mm struct TLBs * - flush_tlb_all() flushes all processes TLBs * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(mm, start, end) flushes a range of pages */#define flush_tlb() do { } while (0)#define flush_tlb_all() do { } while (0)#define flush_tlb_mm(mm) do { } while (0)#define flush_tlb_range(mm, start, end) do { } while (0)#define flush_tlb_page(vma, vmaddr) do { } while (0)/* * We have a mem map cache... */extern __inline__ void update_mm_cache_all(void){ struct task_struct *p; p = &init_task; do { processor.u.armv2._update_map(p); p = p->next_task; } while (p != &init_task); processor.u.armv2._remap_memc (current);}extern __inline__ void update_mm_cache_task(struct task_struct *tsk){ processor.u.armv2._update_map(tsk); if (tsk == current) processor.u.armv2._remap_memc (tsk);}extern __inline__ void update_mm_cache_mm(struct mm_struct *mm){ struct task_struct *p; p = &init_task; do { if (p->mm == mm) processor.u.armv2._update_map(p); p = p->next_task; } while (p != &init_task); if (current->mm == mm) processor.u.armv2._remap_memc (current);}extern __inline__ void update_mm_cache_mm_addr(struct mm_struct *mm, unsigned long addr, pte_t pte){ struct task_struct *p; p = &init_task; do { if (p->mm == mm) processor.u.armv2._update_mmu_cache(p, addr, pte); p = p->next_task; } while (p != &init_task); if (current->mm == mm) processor.u.armv2._remap_memc (current);}#define __flush_entry_to_ram(entry)/* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. *//* PMD_SHIFT determines the size of the area a second-level page table can map */#define PMD_SHIFT 20#define PMD_SIZE (1UL << PMD_SHIFT)#define PMD_MASK (~(PMD_SIZE-1))/* PGDIR_SHIFT determines what a third-level page table entry can map */#define PGDIR_SHIFT 20#define PGDIR_SIZE (1UL << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))/* * entries per page directory level: the arm3 is one-level, so * we don't really have any PMD or PTE directory physically. * * 18-Oct-1997 RMK Now two-level (32x32) */#define PTRS_PER_PTE 32#define PTRS_PER_PMD 1#define PTRS_PER_PGD 32/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_START 0x01a00000#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define _PAGE_PRESENT 0x01#define _PAGE_READONLY 0x02#define _PAGE_NOT_USER 0x04#define _PAGE_OLD 0x08#define _PAGE_CLEAN 0x10#define _PAGE_TABLE (_PAGE_PRESENT)#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_OLD | _PAGE_CLEAN)/* -- present -- -- !dirty -- --- !write --- ---- !user --- */#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY | _PAGE_NOT_USER)#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_CLEAN )#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY )#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY )#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_NOT_USER)/* * The arm can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_COPY#define __P011 PAGE_COPY#define __P100 PAGE_READONLY#define __P101 PAGE_READONLY#define __P110 PAGE_COPY#define __P111 PAGE_COPY#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED#define __S011 PAGE_SHARED#define __S100 PAGE_READONLY#define __S101 PAGE_READONLY#define __S110 PAGE_SHARED#define __S111 PAGE_SHARED#undef TEST_VERIFY_AREAextern unsigned long *empty_zero_page;/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern pte_t __bad_page(void);extern pte_t *__bad_pagetable(void);#define BAD_PAGETABLE __bad_pagetable()#define BAD_PAGE __bad_page()#define ZERO_PAGE ((unsigned long) empty_zero_page)/* number of bits that fit into a memory pointer */#define BYTES_PER_PTR (sizeof(unsigned long))#define BITS_PER_PTR (8*BYTES_PER_PTR)/* to align the pointer to a pointer address */#define PTR_MASK (~(sizeof(void*)-1))/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */#define SIZEOF_PTR_LOG2 2/* to find an entry in a page-table */#define PAGE_PTR(address) \((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)/* to set the page-dir */#define SET_PAGE_DIR(tsk,pgdir) \do { \ tsk->tss.memmap = (unsigned long)pgdir; \ processor.u.armv2._update_map(tsk); \ if ((tsk) == current) \ processor.u.armv2._remap_memc (current); \} while (0)extern unsigned long physical_start;extern unsigned long physical_end;#define pte_none(pte) (!pte_val(pte))#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)#define pte_clear(ptep) set_pte((ptep), __pte(0))#define pmd_none(pmd) (!pmd_val(pmd))#define pmd_bad(pmd) ((pmd_val(pmd) & 0xfc000002))#define pmd_present(pmd) (pmd_val(pmd) & _PAGE_PRESENT)#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))/* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */#define pgd_none(pgd) (0)#define pgd_bad(pgd) (0)#define pgd_present(pgd) (1)#define pgd_clear(pgdp)/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_NOT_USER); }extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_READONLY); }extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_NOT_USER); }extern inline int pte_dirty(pte_t pte) { return !(pte_val(pte) & _PAGE_CLEAN); }extern inline int pte_young(pte_t pte) { return !(pte_val(pte) & _PAGE_OLD); }#define pte_cacheable(pte) 1extern inline pte_t pte_nocache(pte_t pte) { return pte; }extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_READONLY; return pte; }extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_NOT_USER; return pte; }extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_NOT_USER; return pte; }extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) |= _PAGE_CLEAN; return pte; }extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) |= _PAGE_OLD; return pte; }extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_READONLY; return pte; }extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) &= ~_PAGE_CLEAN; return pte; }extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) &= ~_PAGE_OLD; return pte; }/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot){ pte_t pte; pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot); return pte;}extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot){ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte;}#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))extern __inline__ unsigned long pte_page(pte_t pte){ return __phys_to_virt(pte_val(pte) & PAGE_MASK);}extern __inline__ pmd_t mk_pmd (pte_t *ptep){ pmd_t pmd; pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_TABLE; return pmd;}#define set_pmd(pmdp,pmd) ((*(pmdp)) = (pmd))extern __inline__ unsigned long pmd_page(pmd_t pmd){ return __phys_to_virt(pmd_val(pmd) & ~_PAGE_TABLE);}/* to find an entry in a page-table-directory */extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address){ return mm->pgd + (address >> PGDIR_SHIFT);}/* Find an entry in the second-level page table.. */#define pmd_offset(dir, address) ((pmd_t *)(dir))/* Find an entry in the third-level page table.. */extern __inline__ pte_t * pte_offset(pmd_t *dir, unsigned long address){ return (pte_t *)pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));}/* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */#define pte_free_kernel(pte) pte_free((pte))#define pte_alloc_kernel(pmd,address) pte_alloc((pmd),(address))/* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */#define pmd_free_kernel(pmdp)#define pmd_alloc_kernel(pgd,address) ((pmd_t *)(pgd))extern __inline__ void pte_free(pte_t * pte){ extern void kfree(void *); kfree (pte);}extern const char bad_pmd_string[];extern __inline__ pte_t *pte_alloc(pmd_t * pmd, unsigned long address){ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none (*pmd)) { pte_t *page = (pte_t *) kmalloc (PTRS_PER_PTE * BYTES_PER_PTR, GFP_KERNEL); if (pmd_none (*pmd)) { if (page) { memzero (page, PTRS_PER_PTE * BYTES_PER_PTR); set_pmd(pmd, mk_pmd(page)); return page + address; } set_pmd (pmd, mk_pmd (BAD_PAGETABLE)); return NULL; } kfree (page); } if (pmd_bad (*pmd)) { printk(bad_pmd_string, pmd_val(*pmd)); set_pmd (pmd, mk_pmd (BAD_PAGETABLE)); return NULL; } return (pte_t *) pmd_page(*pmd) + address;}/* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */#define pmd_free(pmd)#define pmd_alloc(pgd,address) ((pmd_t *)(pgd))/* * Free a page directory. Takes the virtual address. */extern __inline__ void pgd_free(pgd_t * pgd){ extern void kfree(void *); kfree ((void *)pgd);}/* * Allocate a new page directory. Return the virtual address of it. */extern __inline__ pgd_t * pgd_alloc(void){ pgd_t *pgd; extern void *kmalloc(unsigned int, int); pgd = (pgd_t *) kmalloc(PTRS_PER_PGD * BYTES_PER_PTR, GFP_KERNEL); if (pgd) memzero (pgd, PTRS_PER_PGD * BYTES_PER_PTR); return pgd;}extern pgd_t swapper_pg_dir[PTRS_PER_PGD];#define update_mmu_cache(vma,address,pte)#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)#define SWP_OFFSET(entry) ((entry) >> 8)#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))#endif /* __ASM_PROC_PAGE_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -