📄 pgtable.h
字号:
/* * linux/include/asm-arm/proc-armv/pgtable.h * * Copyright (C) 1995, 1996, 1997 Russell King * * 12-01-1997 RMK Altered flushing routines to use function pointers * now possible to combine ARM6, ARM7 and StrongARM versions. */#ifndef __ASM_PROC_PGTABLE_H#define __ASM_PROC_PGTABLE_H#ifndef NO_MM#include <asm/arch/mmu.h>#define LIBRARY_TEXT_START 0x0c000000/* * Cache flushing... */#define flush_cache_all() \ processor.u.armv3v4._flush_cache_all()#define flush_cache_mm(_mm) \ do { \ if ((_mm) == current->mm) \ processor.u.armv3v4._flush_cache_all(); \ } while (0)#define flush_cache_range(_mm,_start,_end) \ do { \ if ((_mm) == current->mm) \ processor.u.armv3v4._flush_cache_area \ ((_start), (_end), 1); \ } while (0)#define flush_cache_page(_vma,_vmaddr) \ do { \ if ((_vma)->vm_mm == current->mm) \ processor.u.armv3v4._flush_cache_area \ ((_vmaddr), (_vmaddr) + PAGE_SIZE, \ ((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \ } while (0)/* * We don't have a mem map cache... */#define update_mm_cache_all() do { } while (0)#define update_mm_cache_task(tsk) do { } while (0)#define update_mm_cache_mm(mm) do { } while (0)#define update_mm_cache_mm_addr(mm,addr,pte) do { } while (0)/* * This flushes back any buffered write data. We have to clean and flush the entries * in the cache for this page. Is it necessary to invalidate the I-cache? */#define flush_page_to_ram(_page) \ processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);/* * Make the page uncacheable (must flush page beforehand). */#define uncache_page(_page) \ processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);/* * TLB flushing: * * - flush_tlb() flushes the current mm struct TLBs * - flush_tlb_all() flushes all processes TLBs * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(mm, start, end) flushes a range of pages * * GCC uses conditional instructions, and expects the assembler code to do so as well. * * We drain the write buffer in here to ensure that the page tables in ram * are really up to date. It is more efficient to do this here... */#define flush_tlb() flush_tlb_all()#define flush_tlb_all() \ processor.u.armv3v4._flush_tlb_all()#define flush_tlb_mm(_mm) \ do { \ if ((_mm) == current->mm) \ processor.u.armv3v4._flush_tlb_all(); \ } while (0)#define flush_tlb_range(_mm,_start,_end) \ do { \ if ((_mm) == current->mm) \ processor.u.armv3v4._flush_tlb_area \ ((_start), (_end), 1); \ } while (0)#define flush_tlb_page(_vma,_vmaddr) \ do { \ if ((_vma)->vm_mm == current->mm) \ processor.u.armv3v4._flush_tlb_area \ ((_vmaddr), (_vmaddr) + PAGE_SIZE, \ ((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \ } while (0)/* * Since the page tables are in cached memory, we need to flush the dirty * data cached entries back before we flush the tlb... This is also useful * to flush out the SWI instruction for signal handlers... */#define __flush_entry_to_ram(entry) \ processor.u.armv3v4._flush_cache_entry((unsigned long)(entry))#define __flush_pte_to_ram(entry) \ processor.u.armv3v4._flush_cache_pte((unsigned long)(entry))/* PMD_SHIFT determines the size of the area a second-level page table can map */#define PMD_SHIFT 20#define PMD_SIZE (1UL << PMD_SHIFT)#define PMD_MASK (~(PMD_SIZE-1))/* PGDIR_SHIFT determines what a third-level page table entry can map */#define PGDIR_SHIFT 20#define PGDIR_SIZE (1UL << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))/* * entries per page directory level: the sa110 is two-level, so * we don't really have any PMD directory physically. */#define PTRS_PER_PTE 256#define PTRS_PER_PMD 1#define PTRS_PER_PGD 4096/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET (8*1024*1024)#define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))#define VMALLOC_VMADDR(x) ((unsigned long)(x))/* PMD types (actually level 1 descriptor) */#define PMD_TYPE_MASK 0x0003#define PMD_TYPE_FAULT 0x0000#define PMD_TYPE_TABLE 0x0001#define PMD_TYPE_SECT 0x0002#define PMD_UPDATABLE 0x0010#define PMD_SECT_CACHEABLE 0x0008#define PMD_SECT_BUFFERABLE 0x0004#define PMD_SECT_AP_WRITE 0x0400#define PMD_SECT_AP_READ 0x0800#define PMD_DOMAIN(x) ((x) << 5)/* PTE types (actually level 2 descriptor) */#define PTE_TYPE_MASK 0x0003#define PTE_TYPE_FAULT 0x0000#define PTE_TYPE_LARGE 0x0001#define PTE_TYPE_SMALL 0x0002#define PTE_AP_READ 0x0aa0#define PTE_AP_WRITE 0x0550#define PTE_CACHEABLE 0x0008#define PTE_BUFFERABLE 0x0004/* Domains */#define DOMAIN_KERNEL 0#define _PAGE_CHG_MASK (0xfffff00c | PTE_TYPE_MASK)/* * We define the bits in the page tables as follows: * PTE_BUFFERABLE page is dirty * PTE_AP_WRITE page is writable * PTE_AP_READ page is a young (unsetting this causes faults for any access) * * Any page that is mapped in is assumed to be readable... */#define PAGE_NONE __pgprot(PTE_TYPE_SMALL)#define PAGE_SHARED __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ | PTE_AP_WRITE)#define PAGE_COPY __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ)#define PAGE_READONLY __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ)#define PAGE_KERNEL __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_BUFFERABLE | PTE_AP_WRITE)#define _PAGE_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_KERNEL))/* * The arm can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_COPY#define __P011 PAGE_COPY#define __P100 PAGE_READONLY#define __P101 PAGE_READONLY#define __P110 PAGE_COPY#define __P111 PAGE_COPY#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED#define __S011 PAGE_SHARED#define __S100 PAGE_READONLY#define __S101 PAGE_READONLY#define __S110 PAGE_SHARED#define __S111 PAGE_SHARED#undef TEST_VERIFY_AREA/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern pte_t __bad_page(void);extern pte_t * __bad_pagetable(void);extern unsigned long *empty_zero_page;#define BAD_PAGETABLE __bad_pagetable()#define BAD_PAGE __bad_page()#define ZERO_PAGE ((unsigned long) empty_zero_page)/* number of bits that fit into a memory pointer */#define BYTES_PER_PTR (sizeof(unsigned long))#define BITS_PER_PTR (8*BYTES_PER_PTR)/* to align the pointer to a pointer address */#define PTR_MASK (~(sizeof(void*)-1))/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */#define SIZEOF_PTR_LOG2 2/* to find an entry in a page-table */#define PAGE_PTR(address) \((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)/* to set the page-dir */#define SET_PAGE_DIR(tsk,pgdir) \do { \ tsk->tss.memmap = __virt_to_phys((unsigned long)pgdir); \ if ((tsk) == current) \ __asm__ __volatile__( \ "mcr%? p15, 0, %0, c2, c0, 0\n" \ : : "r" (tsk->tss.memmap)); \} while (0)extern __inline__ int pte_none(pte_t pte){ return !pte_val(pte);}#define pte_clear(ptep) set_pte(ptep, __pte(0))extern __inline__ int pte_present(pte_t pte){ switch (pte_val(pte) & PTE_TYPE_MASK) { case PTE_TYPE_LARGE: case PTE_TYPE_SMALL: return 1; default: return 0; }}extern __inline__ int pmd_none(pmd_t pmd){ return !pmd_val(pmd);}#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))extern __inline__ int pmd_bad(pmd_t pmd){ switch (pmd_val(pmd) & PMD_TYPE_MASK) { case PMD_TYPE_FAULT: case PMD_TYPE_TABLE: return 0; default: return 1; }}extern __inline__ int pmd_present(pmd_t pmd){ switch (pmd_val(pmd) & PMD_TYPE_MASK) { case PMD_TYPE_TABLE: return 1; default: return 0; }}/* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */#define pgd_none(pgd) (0)#define pgd_bad(pgd) (0)#define pgd_present(pgd) (1)#define pgd_clear(pgdp)/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */#define pte_read(pte) (1)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -