📄 keyboard.c
字号:
{ unsigned char leds = getleds(); tty = *vtdata.fgconsole->tty; kbd = vtdata.fgconsole->kbd; if (rep) { /* * This prevents the kbd_key routine from being called * twice, once by this BH, and once by the interrupt * routine. Maybe we should put the key press in a * buffer or variable, and then call the BH... */ disable_irq (IRQ_KEYBOARDRX); if (kbd_repeatkey != -1) kbd_processkey (kbd_repeatkey, 0, 1); enable_irq (IRQ_KEYBOARDRX); rep = 0; } if (leds != ledstate) { ledstate = leds; kbd_drv_setleds(leds); }}/* * Initialise a kbd struct */int kbd_struct_init (struct vt *vt, int init){ vt->kbd->ledflagstate = vt->kbd->default_ledflagstate = KBD_DEFLEDS; vt->kbd->ledmode = LED_SHOW_FLAGS; vt->kbd->lockstate = KBD_DEFLOCK; vt->kbd->slockstate = 0; vt->kbd->modeflags = KBD_DEFMODE; vt->kbd->kbdmode = VC_XLATE; return 0;}int kbd_ioctl (struct vt *vt, int cmd, unsigned long arg){ asmlinkage int sys_ioperm(unsigned long from, unsigned long num, int on); int i; switch (cmd) { case KDGKBTYPE: /* * This is naive. */ i = verify_area (VERIFY_WRITE, (void *)arg, sizeof (unsigned char)); if (!i) put_user (KB_101, (char *)arg); return i; case KDADDIO: case KDDELIO: /* * KDADDIO and KDDELIO may be able to add ports beyond what * we reject here, but to be safe... */ if (arg < GPFIRST || arg > GPLAST) return -EINVAL; return sys_ioperm (arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; case KDENABIO: case KDDISABIO: return sys_ioperm (GPFIRST, GPLAST, (cmd == KDENABIO)) ? -ENXIO : 0; case KDMAPDISP: case KDUNMAPDISP: /* * These work like a combination of mmap and KDENABIO. * this could easily be finished. */ return -EINVAL; case KDSKBMODE: switch (arg) { case K_RAW: vt->kbd->kbdmode = VC_RAW; break; case K_MEDIUMRAW: vt->kbd->kbdmode = VC_MEDIUMRAW; break; case K_XLATE: vt->kbd->kbdmode = VC_XLATE; compute_shiftstate (); break; case K_UNICODE: vt->kbd->kbdmode = VC_UNICODE; compute_shiftstate (); break; default: return -EINVAL; } if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer (*vt->tty); return 0; case KDGKBMODE: i = verify_area (VERIFY_WRITE, (void *)arg, sizeof (unsigned long)); if (!i) { int ucval; ucval = ((vt->kbd->kbdmode == VC_RAW) ? K_RAW : (vt->kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : (vt->kbd->kbdmode == VC_UNICODE) ? K_UNICODE : K_XLATE); put_user (ucval, (int *)arg); } return i; case KDSKBMETA: /* * this could be folded into KDSKBMODE, but for compatibility * reasons, it is not so easy to fold kDGKBMETA into KDGKBMODE. */ switch (arg) { case K_METABIT: clr_vc_kbd_mode (vt->kbd, VC_META); break; case K_ESCPREFIX: set_vc_kbd_mode (vt->kbd, VC_META); break; default: return -EINVAL; } return 0; case KDGKBMETA: i = verify_area (VERIFY_WRITE, (void *)arg, sizeof (unsigned long)); if (!i) { int ucval; ucval = (vc_kbd_mode (vt->kbd, VC_META) ? K_ESCPREFIX : K_METABIT); put_user (ucval, (int *)arg); } return i; case KDGETKEYCODE: { struct kbkeycode *const a = (struct kbkeycode *)arg; i = verify_area (VERIFY_WRITE, a, sizeof (struct kbkeycode)); if (!i) { unsigned int sc; sc = get_user (&a->scancode); i = getkeycode (sc); if (i > 0) put_user (i, &a->keycode); i = 0; } return i; } case KDSETKEYCODE: { struct kbkeycode *const a = (struct kbkeycode *)arg; i = verify_area (VERIFY_READ, a, sizeof (struct kbkeycode)); if (!i) { unsigned int sc, kc; sc = get_user (&a->scancode); kc = get_user (&a->keycode); i = setkeycode (sc, kc); } return i; } case KDGKBENT: { struct kbentry *const a = (struct kbentry *)arg; i = verify_area (VERIFY_WRITE, a, sizeof (struct kbentry)); if (!i) { ushort *keymap, val; u_char s; i = get_user (&a->kb_index); if (i >= NR_KEYS) return -EINVAL; s = get_user (&a->kb_table); if (s >= MAX_NR_KEYMAPS) return -EINVAL; keymap = key_maps[s]; if (keymap) { val = U(keymap[i]); if (vt->kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) val = K_HOLE; } else val = (i ? K_HOLE : K_NOSUCHMAP); put_user (val, &a->kb_value); i = 0; } return i; } case KDSKBENT: { struct kbentry *const a = (struct kbentry *)arg; i = verify_area (VERIFY_WRITE, a, sizeof (struct kbentry)); if (!i) { ushort *key_map; u_char s; u_short v, ov; if ((i = get_user(&a->kb_index)) >= NR_KEYS) return -EINVAL; if ((s = get_user(&a->kb_table)) >= MAX_NR_KEYMAPS) return -EINVAL; v = get_user(&a->kb_value); if (!i && v == K_NOSUCHMAP) { /* disallocate map */ key_map = key_maps[s]; if (s && key_map) { key_maps[s] = 0; if (key_map[0] == U(K_ALLOCATED)) { kfree_s(key_map, sizeof(plain_map)); keymap_count--; } } return 0; } if (KTYP(v) < NR_TYPES) { if (KVAL(v) > max_vals[KTYP(v)]) return -EINVAL; } else if (kbd->kbdmode != VC_UNICODE) return -EINVAL; /* assignment to entry 0 only tests validity of args */ if (!i) return 0; if (!(key_map = key_maps[s])) { int j; if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && !suser()) return -EPERM; key_map = (ushort *) kmalloc(sizeof(plain_map), GFP_KERNEL); if (!key_map) return -ENOMEM; key_maps[s] = key_map; key_map[0] = U(K_ALLOCATED); for (j = 1; j < NR_KEYS; j++) key_map[j] = U(K_HOLE); keymap_count++; } ov = U(key_map[i]); if (v == ov) return 0; /* nothing to do */ /* * Only the Superuser can set or unset the Secure * Attention Key. */ if (((ov == K_SAK) || (v == K_SAK)) && !suser()) return -EPERM; key_map[i] = U(v); if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) compute_shiftstate(); return 0; } return i; } case KDGKBSENT: { struct kbsentry *a = (struct kbsentry *)arg; char *p; u_char *q; int sz; i = verify_area(VERIFY_WRITE, (void *)a, sizeof(struct kbsentry)); if (i) return i; if ((i = get_user(&a->kb_func)) >= MAX_NR_FUNC || i < 0) return -EINVAL; sz = sizeof(a->kb_string) - 1; /* sz should have been a struct member */ q = a->kb_string; p = func_table[i]; if(p) for ( ; *p && sz; p++, sz--) put_user(*p, q++); put_user('\0', q); return ((p && *p) ? -EOVERFLOW : 0); } case KDSKBSENT: { struct kbsentry * const a = (struct kbsentry *)arg; int delta; char *first_free, *fj, *fnw; int j, k, sz; u_char *p; char *q; i = verify_area(VERIFY_READ, (void *)a, sizeof(struct kbsentry)); if (i) return i; if ((i = get_user(&a->kb_func)) >= MAX_NR_FUNC) return -EINVAL; q = func_table[i]; first_free = funcbufptr + (funcbufsize - funcbufleft); for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) ; if (j < MAX_NR_FUNC) fj = func_table[j]; else fj = first_free; delta = (q ? -strlen(q) : 1); sz = sizeof(a->kb_string); /* sz should have been a struct member */ for (p = a->kb_string; get_user(p) && sz; p++,sz--) delta++; if (!sz) return -EOVERFLOW; if (delta <= funcbufleft) { /* it fits in current buf */ if (j < MAX_NR_FUNC) { memmove(fj + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] += delta; } if (!q) func_table[i] = fj; funcbufleft -= delta; } else { /* allocate a larger buffer */ sz = 256; while (sz < funcbufsize - funcbufleft + delta) sz <<= 1; fnw = (char *) kmalloc(sz, GFP_KERNEL); if(!fnw) return -ENOMEM; if (!q) func_table[i] = fj; if (fj > funcbufptr) memmove(fnw, funcbufptr, fj - funcbufptr); for (k = 0; k < j; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr); if (first_free > fj) { memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; } if (funcbufptr != func_buf) kfree_s(funcbufptr, funcbufsize); funcbufptr = fnw; funcbufleft = funcbufleft - delta + sz - funcbufsize; funcbufsize = sz; } for (p = a->kb_string, q = func_table[i]; ; p++, q++) if (!(*q = get_user(p))) break; return 0; } case KDGKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; i = verify_area(VERIFY_WRITE, (void *) a, sizeof(struct kbdiacrs)); if (i) return i; put_user(accent_table_size, &a->kb_cnt); memcpy_tofs(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr)); return 0; } case KDSKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; unsigned int ct; i = verify_area(VERIFY_READ, (void *) a, sizeof(struct kbdiacrs)); if (i) return i; ct = get_user(&a->kb_cnt); if (ct >= MAX_DIACR) return -EINVAL; accent_table_size = ct; memcpy_fromfs(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr)); return 0; } /* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (i) return i; put_user(vt->kbd->ledflagstate | (vt->kbd->default_ledflagstate << 4), (char *) arg); return 0; case KDSKBLED: if (arg & ~0x77) return -EINVAL; vt->kbd->ledflagstate = (arg & 7); vt->kbd->default_ledflagstate = ((arg >> 4) & 7); set_leds (); return 0; /* the ioctls below only set the lights, not the functions */ /* for those, see KDGKBLED and KDSKBLED above */ case KDGETLED: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (i) return i; put_user(getledstate(), (char *) arg); return 0; case KDSETLED: setledstate(kbd, arg); return 0; /* * A process can indicate its willingness to accept signals * generated by pressing an appropriate key combination. * Thus, one can have a daemon that e.g. spawns a new console * upon a keypess and then changes to it. * Probably init should be changed to do this (and have a * field ks (`keyboard signal') in inittab describing the * desired acion), so that the number of background daemons * does not increase. */ case KDSIGACCEPT: { if (arg < 1 || arg > NSIG || arg == SIGKILL) return -EINVAL; spawnpid = current->pid; spawnsig = arg; return 0; } default: return -ENOIOCTLCMD; }}int kbd_init (void){ int ret; init_bh(KEYBOARD_BH, kbd_bh); ret = kbd_drv_init(); mark_bh(KEYBOARD_BH); return ret;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -