⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmatrix.h

📁 一个由Mike Gashler完成的机器学习方面的includes neural net, naive bayesian classifier, decision tree, KNN, a genet
💻 H
字号:
/*	Copyright (C) 2006, Mike Gashler	This library is free software; you can redistribute it and/or	modify it under the terms of the GNU Lesser General Public	License as published by the Free Software Foundation; either	version 2.1 of the License, or (at your option) any later version.	see http://www.gnu.org/copyleft/lesser.html*/#ifndef __GMATRIX_H__#define __GMATRIX_H__class GVector;// A two-dimensional matrix. Elements are zero-indexed (not one-indexed like most math textbooks).class GMatrix{protected:	double* m_pData;	int m_nRows;	int m_nColumns;public:	GMatrix(int nRows = 0, int nColumns = 0);	virtual ~GMatrix();#ifndef NO_TEST_CODE	static void Test();#endif // !NO_TEST_CODE	// Get an element	inline double Get(int nRow, int nColumn) const	{		return m_pData[nRow * m_nColumns + nColumn];	}	// Set an element	inline void Set(int nRow, int nColumn, double dValue)	{		m_pData[nRow * m_nColumns + nColumn] = dValue;	}	// Returns the number of columns in the matrix	int GetColumnCount() const { return m_nColumns; }	// Returns the number of rows in the matrix	int GetRowCount() const { return m_nRows; }	// Sets the diagonals to 1 and all other elements to 0	void SetToIdentity();	// Rotates the matrix around the diagonal	void Transpose();	// Resizes this matrix	void Resize(int nRows, int nColumns);	// Makes a deep copy of pMatrix	void Copy(const GMatrix* pMatrix);	// Multiplies this matrix by a scalar value	void Multiply(double dScalar);	// Multiplies a vector by this matrix. The input vector must have	// the same number of elements as columns in the matrix. The output	// vector will have the same number of elements as rows in the matrix.	void Multiply(const double* pVectorIn, double* pVectorOut);	// Returns pA * pB	void Multiply(const GMatrix* pA, const GMatrix* pB);	// Returns the vector that is the nRow'th row of the matrix	double* GetRow(int nRow) { return &m_pData[nRow * m_nColumns]; }	// Copies a column into the provided vector	void GetColumn(int nCol, double* pVector);	// Computes the average value in the specified column	double ComputeColumnMean(int nCol) const;	// Computes the sum of the values in the specified column	double ComputeColumnSum(int nCol) const;	// Dumps a representation of the matrix to stdout	void Print();	// Dumps a partial representation of the matrix to stdout.	// typically you will select a small number for n, like 2 or 3	void PrintCorners(int n);	// Returns the sum of the diagonal values in the matrix	double ComputeTrace();	void Solve(double* pVector);	// Computes the first nCount eigenvectors of pInputMatrix	void ComputeEigenVectors(int nCount, const GMatrix* pInputMatrix);
	// Computes eigenvalues from the eigenvectors
	void ComputeEigenValues(double* pOutValues, GMatrix* pEigenVectors);
	int CountNonZeroElements();	// Returns the sum squared difference of all the elements in this matrix	// with the corresponding elements in other. The matrixes must be the same size.	double ComputeSumSquaredDifference(GMatrix* other);	// This computes the square root of pIn. It returns true if successful.	// It returns false if pIn is not positive definate. If you take the	// matrix that this returns and multiply it by its transpose, you should get	// pIn again.	bool Cholesky(const GMatrix* pIn);};#endif // __GMATRIX_H__

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -