📄 dscdmabpsk.m
字号:
% Program
%
% Simulation program to realize DS-CDMA system
%
% dscdmabpsk.m
%
%
function [dscdma_ber]=dscdmabpsk(snr_in_dB)
%******************** Preparation part **********************
sr=256000.0; % Symbol rate
ml=1; % Number of modulation levels
br=sr.*ml; % Bit rate (=symbol rate in this case)
nd = 100;
N=nd;% Number of symbols that simulates in each loop
ebn0=snr_in_dB; % Eb/N0
IPOINT=8; % Number of oversamples
%******************* Filter initialization ********************
irfn=21; % Number of filter taps
alfs=0.5; % Rolloff factor
[xh] = hrollfcoef(irfn,IPOINT,sr,alfs,1); %Transmitter filter coefficients
[xh2] = hrollfcoef(irfn,IPOINT,sr,alfs,0); %Receiver filter coefficients
%******************* Fading initialization ********************
% If you use fading function "sefade", you can initialize all of parameters.
% Otherwise you can comment out the following initialization.
% The detailed explanation of all of valiables are mentioned in Program 2-8.
% Time resolution
tstp=1/sr/IPOINT;
% Arrival time for each multipath normalized by tstp
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
itau = [0];
% Mean power for each multipath normalized by direct wave.
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
dlvl = [0];
% Number of waves to generate fading for each multipath.
% In normal case, more than six waves are needed to generate Rayleigh fading
n0=[6];
% Initial Phase of delayed wave
% In this simulation four-path Rayleigh fading are considered.
th1=[0.0];
% Number of fading counter to skip
itnd0=nd*IPOINT*100;
% Initial value of fading counter
% In this simulation one-path Rayleigh fading are considered.
% Therefore one fading counter are needed.
itnd1=[1000];
% Number of directwave + Number of delayed wave
% In this simulation one-path Rayleigh fading are considered
now1=1;
% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=160;
% You can decide two mode to simulate fading by changing the variable flat
% flat : flat fading or not
% (1->flat (only amplitude is fluctuated),0->nomal(phase and amplitude are fluctutated)
flat =1;
m=31; %扩频码的码片数目
%********************** Spreading code initialization **********************
user = 1; % number of users
seq = 1; % 1:M-sequence 2:Gold 3:Orthogonal Gold
stage = 5; % number of stages
ptap1 = [1 3]; % position of taps for 1st
ptap2 = [2 3]; % position of taps for 2nd
regi1 = [1 1 1 1 1]; % initial value of register for 1st
regi2 = [1 1 1 1 1]; % initial value of register for 2nd
%******************** Generation of the spreading code *********************
switch seq
case 1 % M-sequence
code = mseq(stage,ptap1,regi1,user);
case 2 % Gold sequence
m1 = mseq(stage,ptap1,regi1);
m2 = mseq(stage,ptap2,regi2);
code = goldseq(m1,m2,user);
case 3 % Orthogonal Gold sequence
m1 = mseq(stage,ptap1,regi1);
m2 = mseq(stage,ptap2,regi2);
code = [goldseq(m1,m2,user),zeros(user,1)];
end
code = code * 2 - 1;
clen = length(code);
%**************************** START CALCULATION ****************************
nloop = 1000; % simulation number of times
noe = 0;
nod = 0;
for iii=1:nloop
%****************************** Transmitter ********************************
data = rand(user,nd*ml) > 0.5;
%******************** BPSK Modulation ***********************
data1=data.*2-1; %————————测试点————————
%********************扩展原始码元以实现扩频序列*************
%for i=1:N
%for j=(m*(i-1)+1):m*i
% data1((m*(i-1)+1):m*i)=data1(i)*code(1,:) %第一路天线需要发射的信号————————测试点
%end
data1=spread(data1,code);
%data8=despread(data1,code)%-------可以用于检测
[data2] = oversamp( data1, N*m , IPOINT); %128 -1,0,1
[data3] = conv(data2,xh); % conv: built in function--------测试点 295
%****************** Attenuation Calculation *****************
spow=sum(data3.*data3)/nd;%————————————————————————????
attn=0.5*spow*sr/br*10.^(-ebn0/10);
attn=sqrt(attn);
%********************** Fading channel **********************
% Generated data are fed into a fading simulator
% In the case of BPSK, only Ich data are fed into fading counter
[ifade,qfade]=sefade(data3,zeros(1,length(data3)),itau,dlvl,th1,n0,itnd1,now1,length(data3),tstp,fd,flat);
% Updata fading counter
itnd1 = itnd1+ itnd0;
%************ Add White Gaussian Noise (AWGN) ***************
inoise=randn(1,length(ifade)).*attn; % randn: built in function
data4=ifade+inoise; %-----------------------------------------------------295
data5=conv(data4,xh2); % conv: built in function--------------------------462
sampl=irfn*IPOINT+1;
data6 = data5(sampl:IPOINT:IPOINT*nd*clen+sampl-1); %------------------------------------16
%****************************解扩信号************************
data7=despread(data6,code);
%******************** BPSK Demodulation *********************
demodata=data7 > 0;
%******************** Bit Error Rate (BER) ******************
% count number of instantaneous errors
noe2=sum(abs(data-demodata)); % sum: built in function
% count number of instantaneous transmitted data
nod2=length(data); % length: built in function
noe=noe+noe2;
nod=nod+nod2;
%fprintf('%d\t%e\n',iii,noe2/nod2);
end % for iii=1:nloop
%********************** Output result ***************************
dscdma_ber = noe/nod;
fprintf('%d\t%d\t%d\t%e\n',snr_in_dB,noe,nod,noe/nod);
%******************** end of file ***************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -