📄 sip.cc
字号:
/* * Player - One Hell of a Robot Server * Copyright (C) 2000 * Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* * $Id: sip.cc,v 1.20 2006/01/20 02:44:25 gerkey Exp $ * * part of the P2OS parser. methods for filling and parsing server * information packets (SIPs) */#include <stdio.h>#include <limits.h>#include <math.h> /* rint(3) */#include <sys/types.h>#include <stdlib.h> /* for abs() */#include <unistd.h>#include <libplayercore/error.h>#include "sip.h"void SIP::Fill(player_p2os_data_t* data){ /////////////////////////////////////////////////////////////// // odometry // initialize position to current offset data->position.pos.px = this->x_offset / 1e3; data->position.pos.py = this->y_offset / 1e3; // now transform current position by rotation if there is one // and add to offset if(this->angle_offset != 0) { double rot = DTOR(this->angle_offset); // convert rotation to radians data->position.pos.px += ((this->xpos/1e3) * cos(rot) - (this->ypos/1e3) * sin(rot)); data->position.pos.py += ((this->xpos/1e3) * sin(rot) + (this->ypos/1e3) * cos(rot)); data->position.pos.pa = DTOR(this->angle_offset + angle); } else { data->position.pos.px += this->xpos / 1e3; data->position.pos.py += this->ypos / 1e3; data->position.pos.pa = DTOR(this->angle); } data->position.vel.px = (((this->lvel) + (this->rvel) ) / 2) / 1e3; data->position.vel.py = 0.0; data->position.vel.pa = ((double)(this->rvel - this->lvel) / (2.0/PlayerRobotParams[param_idx].DiffConvFactor)); data->position.stall = (unsigned char)(this->lwstall || this->rwstall); /////////////////////////////////////////////////////////////// // compass memset(&(data->compass),0,sizeof(data->compass)); data->compass.pos.pa = DTOR(this->compass); /////////////////////////////////////////////////////////////// // gyro memset(&(data->gyro),0,sizeof(data->gyro)); data->gyro.pos.pa = DTOR(this->gyro_rate); /////////////////////////////////////////////////////////////// // sonar data->sonar.ranges_count = PlayerRobotParams[param_idx].SonarNum; for(int i=0;i<MIN(PlayerRobotParams[param_idx].SonarNum,ARRAYSIZE(sonars));i++) data->sonar.ranges[i] = this->sonars[i] / 1e3; /////////////////////////////////////////////////////////////// // gripper data->gripper.state = (unsigned char)(this->timer >> 8); data->gripper.beams = (unsigned char)this->digin; /////////////////////////////////////////////////////////////// // bumper data->bumper.bumpers_count = 10; int j = 0; for(int i=4;i>=0;i--) data->bumper.bumpers[j++] = (unsigned char)((this->frontbumpers >> i) & 0x01); for(int i=4;i>=0;i--) data->bumper.bumpers[j++] = (unsigned char)((this->rearbumpers >> i) & 0x01); /////////////////////////////////////////////////////////////// // power // set the bits that indicate which fields we're using data->power.valid = PLAYER_POWER_MASK_VOLTS | PLAYER_POWER_MASK_PERCENT; data->power.volts = this->battery / 1e1; data->power.percent = 1e2 * (data->power.volts / P2OS_NOMINAL_VOLTAGE); /////////////////////////////////////////////////////////////// // digital I/O data->dio.count = (unsigned char)8; data->dio.digin = (unsigned int)this->digin; /////////////////////////////////////////////////////////////// // analog I/O //TODO: should do this smarter, based on which analog input is selected data->aio.voltages_count = (unsigned char)1; data->aio.voltages[0] = (this->analog / 255.0) * 5.0; /* CMUcam blob tracking interface. The CMUcam only supports one blob ** (and therefore one channel too), so everything else is zero. All ** data is storde in the blobfinder packet in Network byte order. ** Note: In CMUcam terminology, X is horizontal and Y is vertical, with ** (0,0) being TOP-LEFT (from the camera's perspective). Also, ** since CMUcam doesn't have range information, but does have a ** confidence value, I'm passing it back as range. */ memset(data->blobfinder.blobs,0, sizeof(player_blobfinder_blob_t)*PLAYER_BLOBFINDER_MAX_BLOBS); data->blobfinder.width = CMUCAM_IMAGE_WIDTH; data->blobfinder.height = CMUCAM_IMAGE_HEIGHT; if (blobarea > 1) // With filtering, definition of track is 2 pixels { data->blobfinder.blobs_count = 1; data->blobfinder.blobs[0].color = this->blobcolor; data->blobfinder.blobs[0].x = this->blobmx; data->blobfinder.blobs[0].y = this->blobmy; data->blobfinder.blobs[0].left = this->blobx1; data->blobfinder.blobs[0].right = this->blobx2; data->blobfinder.blobs[0].top = this->bloby1; data->blobfinder.blobs[0].bottom = this->bloby2; data->blobfinder.blobs[0].area = this->blobarea; data->blobfinder.blobs[0].range = this->blobconf; } else data->blobfinder.blobs_count = 0; // Fill in arm data memset (data->actarray.actuators, 0, sizeof (player_actarray_actuator_t) * PLAYER_ACTARRAY_NUM_ACTUATORS); data->actarray.actuators_count = armNumJoints; for (int ii = 0; ii < armNumJoints; ii++) { data->actarray.actuators[ii].position = armJointPosRads[ii]; data->actarray.actuators[ii].speed = 0; // State is complex. It can be idle, moving, or stalled (we don't have brakes so don't need to worry about the brake state). // Moving means have moving state from status packet // Idle means have not moving state from status packet and are at target position // Stalled means have not moving state from status packet and are not at target position if (armJointMoving[ii]) data->actarray.actuators[ii].state = PLAYER_ACTARRAY_ACTSTATE_MOVING; else { if (armJointPos[ii] == armJointTargetPos[ii]) data->actarray.actuators[ii].state = PLAYER_ACTARRAY_ACTSTATE_IDLE; else data->actarray.actuators[ii].state = PLAYER_ACTARRAY_ACTSTATE_STALLED; } }}int SIP::PositionChange( unsigned short from, unsigned short to ) { int diff1, diff2; /* find difference in two directions and pick shortest */ if ( to > from ) { diff1 = to - from; diff2 = - ( from + 4096 - to ); } else { diff1 = to - from; diff2 = 4096 - from + to; } if ( abs(diff1) < abs(diff2) ) return(diff1); else return(diff2);}void SIP::Print() { int i; printf("lwstall:%d rwstall:%d\n", lwstall, rwstall); printf("Front bumpers: "); for(int i=0;i<5;i++) { printf("%d", (frontbumpers >> i) & 0x01 ); } puts(""); printf("Rear bumpers: "); for(int i=0;i<5;i++) { printf("%d", (rearbumpers >> i) & 0x01 ); } puts(""); printf("status: 0x%x analog: %d ", status, analog); printf("digin: "); for(i=0;i<8;i++) { printf("%d", (digin >> 7-i ) & 0x01); } printf(" digout: "); for(i=0;i<8;i++) { printf("%d", (digout >> 7-i ) & 0x01); } puts(""); printf("battery: %d compass: %d sonarreadings: %d\n", battery, compass, sonarreadings); printf("xpos: %d ypos:%d ptu:%hu timer:%hu\n", xpos, ypos, ptu, timer); printf("angle: %d lvel: %d rvel: %d control: %d\n", angle, lvel, rvel, control); PrintSonars(); PrintArmInfo (); PrintArm ();}void SIP::PrintSonars() { printf("Sonars: "); for(int i = 0; i < 16; i++){ printf("%hu ", sonars[i]); } puts("");}void SIP::PrintArm (){ printf ("Arm power is %s\tArm is %sconnected\n", (armPowerOn ? "on" : "off"), (armConnected ? "" : "not ")); printf ("Arm joint status:\n"); for (int ii = 0; ii < 6; ii++) printf ("Joint %d %s %d\n", ii + 1, (armJointMoving[ii] ? "Moving " : "Stopped"), armJointPos[ii]);}void SIP::PrintArmInfo (){ printf ("Arm version:\t%s\n", armVersionString); printf ("Arm has %d joints:\n", armNumJoints); printf (" |\tSpeed\tHome\tMin\tCentre\tMax\tTicks/90\n"); for (int ii = 0; ii < armNumJoints; ii++) printf ("%d |\t%d\t%d\t%d\t%d\t%d\t%d\n", ii, armJoints[ii].speed, armJoints[ii].home, armJoints[ii].min, armJoints[ii].centre, armJoints[ii].max, armJoints[ii].ticksPer90);}void SIP::Parse( unsigned char *buffer ) { int cnt = 0, change; unsigned short newxpos, newypos; status = buffer[cnt]; cnt += sizeof(unsigned char); /* * Remember P2OS uses little endian: * for a 2 byte short (called integer on P2OS) * byte0 is low byte, byte1 is high byte * The following code is host-machine endian independant * Also we must or (|) bytes together instead of casting to a * short * since on ARM architectures short * must be even byte aligned! * You can get away with this on a i386 since shorts * can be * odd byte aligned. But on ARM, the last bit of the pointer will be ignored! * The or'ing will work on either arch. */ newxpos = ((buffer[cnt] | (buffer[cnt+1] << 8)) & 0xEFFF) % 4096; /* 15 ls-bits */ if (xpos!=INT_MAX) { change = (int) rint(PositionChange( rawxpos, newxpos ) * PlayerRobotParams[param_idx].DistConvFactor); if (abs(change)>100) PLAYER_WARN1("invalid odometry change [%d]; odometry values are tainted", change); else xpos += change; } else xpos = 0; rawxpos = newxpos; cnt += sizeof(short); newypos = ((buffer[cnt] | (buffer[cnt+1] << 8)) & 0xEFFF) % 4096; /* 15 ls-bits */ if (ypos!=INT_MAX) { change = (int) rint(PositionChange( rawypos, newypos ) * PlayerRobotParams[param_idx].DistConvFactor); if (abs(change)>100) PLAYER_WARN1("invalid odometry change [%d]; odometry values are tainted", change); else
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -