📄 node5.html
字号:
bases that are juxtaposed. They can each take on 16 different values,from `AA',`AC', <IMG WIDTH="22" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" SRC="img71.gif" ALT="$\dots$">,to `UU', or 1 to 16, respectively. The number in row `X' and column `Y' of the table is the freeenergy of the 2 × 2 interior loop with the indicated singlestranded bases. Figure <A HREF="node5.html#SINT4">6</A> shows the full table for the CG andAU closing base pairs.<P><BR><DIV ALIGN="CENTER"><A NAME="SINT4"> </A><A NAME="819"> </A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 6:</STRONG>Free energies for all interior loops in RNAclosed by a CG and an AU base pair. Values of `X' or `Y' thatcorrespond to bases that could form Watson-Crick pairs have beenremoved for brevity.</CAPTION><TR><TD><PRE> 5' ------> 3' C \/ \_/ A G /\ | U 3' <------ 5' Y: A A A C C C G G G U U U A C G A C U A G U C G U -------------------------------------------------------------- AA 2.0 1.6 1.0 2.0 2.6 2.6 1.0 1.4 0.2 2.3 1.5 2.2 AC 2.4 1.9 1.3 2.4 2.4 2.4 1.3 1.7 -0.4 2.1 0.8 1.5 AG 0.9 0.4 -0.1 0.9 1.9 1.9 -0.1 0.2 -0.1 1.6 1.2 1.8 CA 1.9 1.5 0.9 1.9 1.9 1.9 0.9 1.3 -0.9 1.6 0.4 1.1 CC 2.8 1.8 2.2 2.2 2.2 2.2 2.2 2.2 0.4 1.9 1.7 1.4X CU 2.7 1.6 2.0 2.1 2.1 2.1 2.0 2.0 0.3 1.8 1.5 1.2 GA 1.0 0.6 0.0 1.0 2.0 2.0 0.0 0.4 0.0 1.7 1.3 2.0 GG 1.8 1.3 0.7 1.8 2.4 2.4 0.7 1.1 0.0 2.1 1.2 1.9 GU 1.8 0.4 1.6 0.8 1.8 1.8 1.6 1.2 -2.0 1.5 -0.7 1.8 UC 2.7 1.6 2.0 2.1 2.1 2.1 2.0 2.0 0.3 1.8 1.5 1.2 UG 0.3 -1.1 0.1 0.7 0.3 0.3 0.1 0.3 -3.5 0.0 -2.2 0.3 UU 2.2 0.7 1.9 1.2 1.2 1.2 1.9 1.5 0.2 0.9 1.5 0.3</PRE></TD></TR></TABLE></DIV><BR><P>Some special rules apply to 2-loops. A stacked pair that occurs atthe end of a helix has a different free energy than if it were in themiddle of a helix. Because of the availablility and precision of data,we distinguish between GC closing and non-GC closing base pairs. Inparticular, a penalty (terminal AU penalty) is assigned to each non-GCclosing base pair in a helix. The value of this penalty is stored inthe <SMALL>MISCLOOP</SMALL> file. <P>Because free energies are assigned to loops, and not to helices, thereis no <I>a priori</I> way of knowing whether or not a stacked pair willbe terminal or not. For this reason, the terminal AU penalty is builtinto the <SMALL>TSTACKH</SMALL> and <SMALL>TSTACKI</SMALL> tables. For bulge,multi-branch and exterior loops, the penalty is applied explicitly. Inall of these cases, the penalty is <I>formally</I> assigned to theadjacent loop, although it really belongs to the helix.<P>A ``Grossly Asymmetry Interior Loop (GAIL)'' is an interior loop thatis 1 × n,where <I>n</I>>2. The special ``GAIL'' rule that is usedin this case substitutes AA mismatches next to both closing basepairs of the loop for use in assigning terminal stacking free energiesfrom the <SMALL>TSTACKI</SMALL> file.<P>A <I>k</I>-loop, <IMG WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img41.gif" ALT="${\bf L}$">,where <I>k</I> > 2, is called a <I>multi-branch</I>loop. It contains <I>k</I>-1 base pairs, and is closed by a <I>k</I><SUP><I>th</I></SUP> basepair. Thus there are <I>k</I> stems radiating out from this loop.Because so little is known about the effects of multi-branch loops onRNA stability, we assign free energies in a way that makes thecomputations easy. This is the justification for the use of an <I>affine</I> free energy penalty for multi-branch loops. The free energy,<!-- MATH: $\delta \delta G({\bf L})$ --><IMG WIDTH="55" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img74.gif" ALT="$\delta \delta G({\bf L})$">,is given by:<BR><P></P><DIV ALIGN="CENTER"><!-- MATH: \begin{equation}\delta \delta G({\bf L}) = a + b \times l_{s}({\bf L}) + c \times l_{d}({\bf L})+ \delta \delta G_{stack},\end{equation} --><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="DDGM1"> </A><IMG WIDTH="325" HEIGHT="28" SRC="img75.gif" ALT="\begin{displaymath}\delta \delta G({\bf L}) = a + b \times l_{s}({\bf L}) + c \times l_{d}({\bf L})+ \delta \delta G_{stack},\end{displaymath}"></TD><TD WIDTH=10 ALIGN="RIGHT">(6)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P>where <I>a</I>, <I>b</I> and <I>c</I> are constants that are stored in the <I>miscloop</I> file and <!-- MATH: $\delta \delta G_{stack}$ --><IMG WIDTH="62" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img76.gif" ALT="$\delta \delta G_{stack}$">includes stacking interactions thatwill be explained below. This simple energy function allows thedynamic programming algorithm used by <I>mfold</I> to find optimalmulti-branch loops in time proportional to <I>n</I><SUP>3</SUP>. It would takeexponentially increasing time (with sequence length) to use a moreappropriate energy function derived from Jacobson-Stockmeyer theory[<A HREF="node19.html#JACH5001">30</A>] that grows logarithmically with <!-- MATH: $l_{s}({\bf L})$ --><IMG WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img25.gif" ALT="$l_{s}({\bf L})$">.Inthe <I>efn2</I> program that recalculates folding free energies usingmore realistic rules (defined below), equation <A HREF="node5.html#DDGM1">6</A> is replacedby:<BR><P></P><DIV ALIGN="CENTER"><!-- MATH: \begin{equation}\delta \delta G({\bf L}) = a + 6b + 1.75 \times RT \times \ln (l_{s}({\bf L})/6) +c \times l_{d}({\bf L}) + \delta \delta G_{stack}.\end{equation} --><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="DDGM2"> </A><IMG WIDTH="465" HEIGHT="28" SRC="img77.gif" ALT="\begin{displaymath}\delta \delta G({\bf L}) = a + 6b + 1.75 \times RT \times \l......bf L})/6) +c \times l_{d}({\bf L}) + \delta \delta G_{stack}.\end{displaymath}"></TD><TD WIDTH=10 ALIGN="RIGHT">(7)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P>That is, the linear dependence on <I>l</I><SUB><I>s</I></SUB> changes to a logarithmicdependence for more than 6 single stranded bases in a multi-branchloop. <P>Stacking free energies, <!-- MATH: $\delta \delta G_{stack}$ --><IMG WIDTH="62" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img76.gif" ALT="$\delta \delta G_{stack}$">are computed for multi-branchand exterior loops. In the folding algorithm these are single strandstacking free energies, also known as <I>dangling base</I> freeenergies, because they are applied to single stranded bases adjacentto a base pair that is either in the loop, or closes the loop. Thissingle stranded base may ``dangle'' from the 5' or 3' end of thebase pair. These parameters are stored in a file named <I>dangle.dg</I> or <I>dangle.TC</I>, as above. <P>Figure <A HREF="node5.html#DANGLE">7</A> shows some single strand stackingfree energies.<P><BR><DIV ALIGN="CENTER"><A NAME="DANGLE"> </A><A NAME="821"> </A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 7:</STRONG>Free energies for all possible single strandedbases that are adjacent to a CG base pair. `X' refers to column. Notethat the 3' dangling free energies are larger in magnitude than the5' dangling free energies.</CAPTION><TR><TD><PRE> X X ------------------ ------------------ A C G U A C G U ------------------ ------------------ 5' --> 3' 5' --> 3' CX C G GX 3' <-- 5' 3' <-- 5' -1.7 -0.8 -1.7 -1.2 -0.2 -0.3 0.0 0.0</PRE></TD></TR></TABLE></DIV><BR><P>If <I>i</I>.<I>j</I> and <IMG WIDTH="46" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img79.gif" ALT="$j\!+\!2.k$">are 2 base pairs, then <I>r</I><SUB><I>j</I>+1</SUB> can interactwith both of them. In this case, the stacking is assigned to only 1 ofthe 2 base pairs, whichever has a lower free energy (usually the 3'stack). If <I>k</I>.<I>l</I> is a base pair and both <I>r</I><SUB><I>k</I>-1</SUB> and <I>r</I><SUB><I>l</I>+1</SUB> aresingle stranded, then both the 5' and 3' stacking arepermitted. The value of <!-- MATH: $\delta \delta G_{stack}$ --><IMG WIDTH="62" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img76.gif" ALT="$\delta \delta G_{stack}$">is then the sum of all thesingle base stacking free energies associated with the base pairs andclosing base pair of the loop.<P>It has been evident for some time that to make the free energy rulesmore realistic for multi-branch and exterior loops, and to improvefolding predictions, we would be compelled to take into account thestacking interactions between adjacent helices. Two helices, <IMG WIDTH="26" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img80.gif" ALT="$\bfH_{1}$">and <IMG WIDTH="26" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img81.gif" ALT="$\bf H_{2}$">in a multi-branch or exterior loop are adjacentif there are 2 base pairs <I>i</I>.<I>j</I> and <IMG WIDTH="46" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img82.gif" ALT="$j\!+\!1.k$">,<I>i</I>.<I>j</I> and <IMG WIDTH="44" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img83.gif" ALT="$i\!+\!1.k$">or<I>i</I>.<I>j</I> and <IMG WIDTH="46" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img84.gif" ALT="$k.j\!-\!1$">that close <IMG WIDTH="26" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img80.gif" ALT="$\bfH_{1}$">and <IMG WIDTH="26" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img81.gif" ALT="$\bf H_{2}$">,respectively. The last 2 cases can only occur in a multi-branch loop.In addition, we define <I>almost adjacent</I> helices as 2 heliceswhere the addition of a single base pair (usually non-canonical),results in an adjacent pair. The concept of adjacent helices isimportant, since they are often coaxial in 3 dimensions, with astacking interaction between the adjacent closing base pairs. Theconcept of almost adjacent comes from tRNA where, in many cases, theaddition of a GA base pair at the base of the anti-codon stem createsa helix that is adjacent to, and stacks on, the D-loop stem.<P><I>Mfold</I> does not yet take into account coaxial stacking of adjacent oralmost adjacent helices. The <I>efn2</I> program that re-evaluatesfolding energies based on our best estimates does take this intoaccount. It is not a trivial matter to decide which combination ofcoaxial stacking and single base stacking gives the lowest free energyin a multi-branch or external loop, and a recursive algorithm isemployed to find this optimal combination. For example, coaxialstacking excludes single base stacking adjacent to the stackedhelices. Free energies for the stacking of adjacent helices are storedin a file called <I>coaxial.dg</I>. The format is the same as for <I>stack.dg</I>. When 2 helices are almost adjacent, then 2 files, named<I>coaxstack.dg</I> and <I>tstackcoax.dg</I> are used. The format is thesame as for stacking free energies. The use of these 2 files isexplained with the aid of Figure <A HREF="node5.html#COAX">8</A>.Thus, in the <I>efn2</I> program, <!-- MATH: $\delta \delta G_{stack}$ --><IMG WIDTH="62" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img76.gif" ALT="$\delta \delta G_{stack}$">is a combination ofsingle base stacking and coaxial stacking, depending on the loop.<P><BR><DIV ALIGN="CENTER"><A NAME="COAX"> </A><A NAME="822"> </A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 8:</STRONG>The helices closed by G<SUP>3</SUP>-C<SUP>18</SUP> andC<SUP>20</SUP>-G<SUP>36</SUP> are almost adjacent. Their stacking is mediated bya non-canonical G<SUP>19</SUP>-A<SUP>37</SUP> base pair. The free energy for the G<SUP>19</SUP>-A<SUP>37</SUP> to C<SUP>20</SUP>-G<SUP>36</SUP> comes from the <I>tstackcoax.dg</I> file. This is used where the phosphate backbone isunbroken, since there are 2 covalent links. The C<SUP>18</SUP>-G<SUP>3</SUP> toG<SUP>19</SUP>-A<SUP>37</SUP> stacking free energy comes from the <I>coaxstack.dg</I>, which is used for stacking where the backbone isbroken. In this case, G<SUP>3</SUP> and A<SUP>37</SUP> are not linked.</CAPTION><TR><TD><IMG WIDTH="461" HEIGHT="188" SRC="img85.gif" ALT="\begin{figure}\centering\epsfig{file=figure.2dps,width=0.9\textwidth}\end{figure}"></TD></TR></TABLE></DIV><BR><P>In the case of circular RNA, the choice of origin isarbitrary. However, once it is made, what would be the exterior loop in linear RNA becomes equivalent to a hairpin, bulge, interior ormulti-branch loop, or a stacked pair.<P>The Turner parameters for RNA folding have been published andsummarized a number of times. The most significant older publicationsare [<A HREF="node19.html#FRES8601">31</A>,<A HREF="node19.html#TURD8701">32</A>,<A HREF="node19.html#TURD8801">33</A>], and <I>mfold</I> was originally usedthese results alone. Version 1 of <I>mfold</I> had no <I>tloop.dg</I> file,and there was a single terminal stacking free energy file, <I>tstack.dg</I>. Tetraloop bonus free energies were added in version2.0. The <I>tstack</I> file was split into 2 files in version 2.2. Version3.0 introduces triloop bonus energies, and both tetraloop and triloopbonus energies now depend on the closing base pair. Special rules forsmall interior loops are also new. For example, the 2 × 2interior loop rules have evolved from [<A HREF="node19.html#WUM9501">34</A>]. Coaxialstacking was also introduced in version 3.0, although it's importancewas realized eariler [<A HREF="node19.html#WALA9401">35</A>].<P>A complete set of DNA folding parameters have recently becomeavailable [<A HREF="node19.html#SANJ9801">36</A>]. These are based on measuremments forstacking and mismatches, and on the literature for loop and othereffects. Parameters are also available for predicting the formation ofRNA/DNA duplexes [<A HREF="node19.html#SUGN9501">37</A>].<P><HR><!--Navigation Panel--><A NAME="tex2html113" HREF="node6.html"><IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="img/next_motif.gif"></A> <A NAME="tex2html110" HREF="FEBS98-html.html"><IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="img/up_motif.gif"></A> <A NAME="tex2html104" HREF="node4.html"><IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="img/previous_motif.gif"></A> <A NAME="tex2html112" HREF="node1.html"><IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="img/contents_motif.gif"></A> <BR><B> Next:</B> <A NAME="tex2html114" HREF="node6.html">Constrained folding</A><B> Up:</B> <A NAME="tex2html111" HREF="FEBS98-html.html">Algorithms and Thermodynamics for</A><B> Previous:</B> <A NAME="tex2html105" HREF="node4.html">Software platforms and environment</A><!--End of Navigation Panel--><ADDRESS><TABLE><TR><TD><IMG SRC=img/shield16.gif HSPACE=20></TD><TD><I>Michael Zuker <BR>Institute for Biomedical Computing<BR>Washington University in St. Louis<BR>1998-12-05</I></TD></TR></TABLE></ADDRESS></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -