⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node5.html

📁 mfold
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<BR><P></P><DIV ALIGN="CENTER"><!-- MATH: \begin{equation}\delta \delta G_{H} = \delta \delta G_{H}^{1} + \delta \delta G_{H}^{2} + \delta \delta G_{H}^{3}+ \delta \delta G_{H}^{4},\end{equation} --><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="DDGH">&#160;</A><IMG WIDTH="283" HEIGHT="28" SRC="img36.gif" ALT="\begin{displaymath}\delta \delta G_{H} = \delta \delta G_{H}^{1} + \delta \delta G_{H}^{2} + \delta \delta G_{H}^{3}+ \delta \delta G_{H}^{4},\end{displaymath}"></TD><TD WIDTH=10 ALIGN="RIGHT">(3)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P>where<DL COMPACT><DT>1.<DD><!-- MATH: $\delta \delta G_{H}^{1}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img37.gif" ALT="$\delta \delta G_{H}^{1}$">is the size dependent contribution from the <I>loop</I>file, or from equation <A HREF="node5.html#DDGLOG2">2</A> for sizes &gt; 30,<DT>2.<DD><!-- MATH: $\delta \delta G_{H}^{2}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img38.gif" ALT="$\delta \delta G_{H}^{2}$">is the terminal mismatch stacking free energy, takenfrom the <I>tstackh</I> file (0 for hairpin loops of size 3),<DT>3.<DD><!-- MATH: $\delta \delta G_{H}^{3}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img39.gif" ALT="$\delta \delta G_{H}^{3}$">is the bonus free energy for triloops ortetraloops listed in the  <SMALL>TRILOOP</SMALL> or  <SMALL>TLOOP</SMALL> files. This value is0 for loops not listed in the  <SMALL>TRILOOP</SMALL> or  <SMALL>TLOOP</SMALL> files and forloop sizes &gt; 4,<DT>4.<DD><!-- MATH: $\delta \delta G_{H}^{4}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img40.gif" ALT="$\delta \delta G_{H}^{4}$">is the bonus or penalty free energy for special cases not covered by the above.</DL><P>A 2-loop, <B>L</B>is closed by a base pair <I>i</I>.<I>j</I> and contains asingle base pair, <I>i</I>'.<I>j</I>', satisfying <I>i</I> &lt; <I>i</I>' &lt; <I>j</I>' &lt; <I>j</I>. In this case,the loop size, l<SUB>s</SUB>(<B>L</B>),can be written as:<BR><P></P><DIV ALIGN="CENTER"><I>l</I><SUB>s</SUB>(<B>L</B>) = <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) + <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>),</DIV><BR>where<I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = <I>i'-i-1</I>and  <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) = <I>j-j'-1</I>.<P>A 2-loop of size 0 is called a <I>stacked pair</I>. This refers tothe stacking between the <I>i</I>.<I>j</I> and immediately adjacent <!-- MATH: $i\!+\!1.j\!-\!1$ --><IMG WIDTH="65" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img45.gif" ALT="$i\!+\!1.j\!-\!1$">basepair contained in the loop. Free energies for these loops are storedin a file named <I>stack.dg</I>, or <I>stack.TC</I>, where <I>TC</I> is atemperature, as defined above. The layout is the same as for the<I>tstackh</I> file. A portion of such a file is given in Figure<A HREF="node5.html#STK">4</A>. A group of 2 or more consecutive base pairs is called a<I>helix</I>. The first and last are the closing base pairs of thehelix. They may be written as <I>i</I>.<I>j</I> and <I>i</I>'.<I>j</I>', where <!-- MATH: $i < i' < j' <j$ --><I>i</I> &lt; <I>i</I>' &lt; <I>j</I>' &lt;<I>j</I>. Then <I>i</I>.<I>j</I> is called the external closing base pair and <I>i</I>'.<I>j</I>' iscalled the internal closing base pair. This nomenclature is used forcircular RNA as well, even though it depends on the choice of origin.<P><BR><DIV ALIGN="CENTER"><A NAME="STK">&#160;</A><A NAME="815">&#160;</A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 4:</STRONG>Sample free energies in kcal/mole for CG basepairs stacked over all possible base pairs, XY.  X refers to row andY refers to column, in the order A, C, G and U respectively. Entriesdenoted by an isolated period, `.', are undefined, and may beconsidered as <IMG WIDTH="32" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img2.gif" ALT="$+\infty $">.</CAPTION><TR><TD><PRE>          5' --> 3'                  CX                      GY                   3' <-- 5'        Y:  A    C    G    U   ----------------------X:A |  .    .    .   -2.1  C |  .    .   -3.3  .   G |  .   -2.4  .   -1.4  U | -2.1  .   -2.1  . </PRE></TD></TR></TABLE></DIV><BR><P>Only Watson-Crick and wobble GU pairs are allowed as <I>bona fide</I>base pairs, even though the software is written to allow for any basepairs. The reason is that nearest neighbor rules break down fornon-canonical, even GU base pairs, and that mismatches must instead betreated as small, symmetric interior loops. Note that the stacks<!-- MATH: $\begin{array}{ccc}5' & --&gt; & 3'  \\   &     WX      \\   &     ZY      \\     3' & <-- & 5'\end{array}and\begin{array}{ccc}     5'& --&gt;& 3'  \\   &     YZ      \\   &     XW      \\     3' & <-- & 5'  \end{array}$ --><IMG WIDTH="258" HEIGHT="92" ALIGN="MIDDLE" BORDER="0" SRC="img47.gif" ALT="$\begin{array}{ccc}5' & --&gt; & 3' \\& WX \\& ZY \\3' & <-- & 5'\end{......in{array}{ccc}5'& --&gt;& 3' \\& YZ \\& XW \\3' & <-- & 5'\end{array}$">are identical, and yet formally different for <IMG WIDTH="55" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img48.gif" ALT="$W \neq Y$">and <IMG WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img49.gif" ALT="$X \neqZ$">.These stacked pairs are stored twice in the file, andthe <I>mfold</I> software checks for symmetry. This is an example ofbuilt in redundancy as a check on precision.<P>A 2-loop, L of size &gt; 0 is called a <I>bulge loop</I> if<I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = 0or  <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) = 0and an interior loopif <B>both</B> <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = 0and <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) = 0.<P>Bulge loops up to size 30 are assigned free energies from the <I>loop</I> file (See Figure <A HREF="node5.html#LOOP">1</A>). For larger bulge loops, equation<A HREF="node5.html#DDGLOG2">2</A> is used. When a bulge loop has size 1, the stackingfree energy for base pairs <I>i</I>.<I>j</I> and <I>i</I>'.<I>j</I>' are used (from the <I>stack</I> file).<P>Interior loops have size <IMG WIDTH="28" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img54.gif" ALT="$\geq 2$">.If <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>), the loop is called <I>symmetric</I>; otherwise, it is <I>asymmetric</I>, or lopsided. The asymmetry of an interior loop, a(<B>L</B>) is defined by:<BR><P></P><DIV ALIGN="CENTER"><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="ASYM">&#160;</A>a(<B>L</B>) = <B>|</B> <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) - <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) <B>|</B></TD><TD WIDTH=10 ALIGN="RIGHT">(4)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P><P>The free energy, <!-- MATH: $\delta \delta G_{I}$ --><IMG WIDTH="39" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img57.gif" ALT="$\delta \delta G_{I}$">,of an interior loop is the sum of 4components:<BR><P></P><DIV ALIGN="CENTER"><!-- MATH: \begin{equation}\delta \delta G_{I} = \delta \delta G_{I}^{1} + \delta \delta G_{I}^{2} + \delta \delta G_{I}^{3} + \delta \delta G_{I}^{4}.\end{equation} --><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="DDGI">&#160;</A><IMG WIDTH="259" HEIGHT="28" SRC="img58.gif" ALT="\begin{displaymath}\delta \delta G_{I} = \delta \delta G_{I}^{1} + \delta \delta G_{I}^{2} + \delta \delta G_{I}^{3} + \delta \delta G_{I}^{4}.\end{displaymath}"></TD><TD WIDTH=10 ALIGN="RIGHT">(5)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P><P><DL COMPACT><DT>1.<DD><!-- MATH: $\delta \delta G_{I}^{1}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img59.gif" ALT="$\delta \delta G_{I}^{1}$">is the size dependent contribution from the <I>loop</I>file, or from equation <A HREF="node5.html#DDGLOG2">2</A> for sizes &gt; 30.<DT>2.<DD><!-- MATH: $\delta \delta G_{I}^{2}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img60.gif" ALT="$\delta \delta G_{I}^{2}$">and <!-- MATH: $\delta \delta G_{I}^{3}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img61.gif" ALT="$\delta \delta G_{I}^{3}$">are terminal mismatch stackingfree energies, taken from the <I>tstacki</I> file. The format of thisfile is identical to the format of the <I>tstackh</I> file. There are 2terms because of the terminal stacking of both <I>r</I><SUB><I>i</I>+1</SUB> and <I>r</I><SUB><I>j</I>-1</SUB>on the <I>i</I>.<I>j</I> base pair, and of both <I>r</I><SUB><I>i</I>'-1</SUB> and <I>r</I><SUB><I>j</I>'+1</SUB> on the<I>i</I>'.<I>j</I>' base pair. This may be visualized as<BR><DIV ALIGN="CENTER"><!-- MATH: \begin{eqnarray}\begin{array}{ccccc}{\rm 5'}-&r_{i}&-&r_{i+1}&-{\rm 3'} \\&    \bullet  & & \circ          \\{\rm 3'}-&r_{j}&-&r_{j-1}&-{\rm 5'}\end{array}  \: \: {\rm and} \: \:\begin{array}{ccccc}{\rm 5'}-&r_{j'}&-&r_{j'+1}&-{\rm 3'} \\           &   \bullet &  &  \circ           \\{\rm 3'}-&r_{i'}&-&r_{i'-1}&-{\rm 5'},\end{array} \nonumber\end{eqnarray} --> <IMG  WIDTH="427" HEIGHT="73" ALIGN="MIDDLE" BORDER="0"  SRC="img62.gif" ALT="$\displaystyle \begin{array}{ccccc}{\rm 5'}-&r_{i}&-&r_{i+1}&-{\rm 3'} \\& \b...... \\& \bullet & & \circ \\{\rm 3'}-&r_{i'}&-&r_{i'-1}&-{\rm 5'},\end{array}$"></DIV><BR CLEAR="ALL"><P></P>where <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img63.gif" ALT="$\bullet$">denotes a base pair and <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img64.gif" ALT="$\circ$">denotes a mismatched pair.<DT>3.<DD><!-- MATH: $\delta \delta G_{I}^{4}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img65.gif" ALT="$\delta \delta G_{I}^{4}$">is the asymmetry penalty, and is a function ofa(<B>L</B>) defined in equation <A HREF="node5.html#ASYM">4</A>. The penalty is 0 forsymmetric interior loops. The asymmetric penalty free energies comefrom the <I>miscloop.dg</I> or <I>miscloop.TC</I> file.</DL><P>Equation <A HREF="node5.html#DDGI">5</A> is now used only for loops of size &gt; 4 or ofasymmetry &gt; 1. This means that special rules apply to 1 &#215; 1, 1 &#215; 2 and  2 &#215; 2interior loops. Free energies for thesesymmetric and almost symmetric interior loops are stored in files <I>sint2.dg</I>, <I>asint1x2.dg</I> and <I>sint4.dg</I>, respectively. Asabove, the suffix <I>TC</I> is used in place of <I>dg</I> when explicitattention is paid to temperature. These files list all possible valuesof the single stranded bases, and all possible Watson-Crick and GUbase pair closings. The <I>sint2</I> file comprises a 6 &#215; 6 array of 4 &#215; 4 tables. There is a table for all possible 6 &#215; 6 closing base pairs. The free energy values for each choiceof closing base pairs are arranged in 4 &#215; 4 tables. The term``closing base pairs'' refers to the closing base pair of the loop andthe contained base pair of the loop, as in the strict definition of aloop. An example of such a table is given in Figure <A HREF="node5.html#SINT2AND12">5</A>.<P><BR><DIV ALIGN="CENTER"><A NAME="SINT2AND12">&#160;</A><A NAME="817">&#160;</A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 5:</STRONG>Left: Free energies for all 1 &#215; 1interior loops in DNA closed by a CG and an AT base pair.  Right: Freeenergies for all 1 &#215; 2 interior loops in RNA closed by a CG andan AU base pair, with a single stranded U 3' to the double strandedU. As in similar Figures, X refers to row and Y to column.</CAPTION><TR><TD><PRE>          5' --> 3'                  5' --> 3'                      X                          X                         C A                        C  A             G T                        G  U                         Y                          YA                      3' <-- 5'                  3' <-- 5'           Y:   A    C    G    T      Y:   A    C    G    U   ---------------------      ---------------------   X:A | 1.1  2.1  0.8  1.0   X:A | 3.2  3.0  2.4  4.8     C | 1.7  1.8  1.0  1.4     C | 3.1  3.0  4.8  3.0     G | 0.5  1.0  0.3  2.0     G | 2.5  4.8  1.6  4.8     T | 1.0  1.4  2.0  0.6     U | 4.8  4.8  4.8  4.8   </PRE></TD></TR></TABLE></DIV><BR><P>The <I>asint1x2</I> file comprises a 24 row by 6 column array of 4 &#215; 4 tables. There is a 4 &#215; 4 table for all possible 6 &#215; 6closing base pairs and choice of one of the singlestranded bases. The free energy values for each choice of closing basepairs and a single stranded base are arranged in 4 &#215; 4tables. An example of these tables is given in Figure <A HREF="node5.html#SINT2AND12">5</A>.<P>Finally, the <I>sint4</I> file contains 36 16 &#215; 16tables, 1 for each pair of closing base pairs. A 2 &#215; 2 interior loop canhave 4<SUP>4</SUP> combinations of single stranded bases. If, for example,the loop is closed by a GC base pair and an AU base pair, we can writeit as:<PRE>  5' ------&gt; 3'   G \/ \_/ A   C /\  |  U  3' &lt;------ 5'</PRE>Both the large `X' and large `Y' refer to an unmatched pair of

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -