📄 node5.html
字号:
<BR><P></P><DIV ALIGN="CENTER"><!-- MATH: \begin{equation}\delta \delta G_{H} = \delta \delta G_{H}^{1} + \delta \delta G_{H}^{2} + \delta \delta G_{H}^{3}+ \delta \delta G_{H}^{4},\end{equation} --><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="DDGH"> </A><IMG WIDTH="283" HEIGHT="28" SRC="img36.gif" ALT="\begin{displaymath}\delta \delta G_{H} = \delta \delta G_{H}^{1} + \delta \delta G_{H}^{2} + \delta \delta G_{H}^{3}+ \delta \delta G_{H}^{4},\end{displaymath}"></TD><TD WIDTH=10 ALIGN="RIGHT">(3)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P>where<DL COMPACT><DT>1.<DD><!-- MATH: $\delta \delta G_{H}^{1}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img37.gif" ALT="$\delta \delta G_{H}^{1}$">is the size dependent contribution from the <I>loop</I>file, or from equation <A HREF="node5.html#DDGLOG2">2</A> for sizes > 30,<DT>2.<DD><!-- MATH: $\delta \delta G_{H}^{2}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img38.gif" ALT="$\delta \delta G_{H}^{2}$">is the terminal mismatch stacking free energy, takenfrom the <I>tstackh</I> file (0 for hairpin loops of size 3),<DT>3.<DD><!-- MATH: $\delta \delta G_{H}^{3}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img39.gif" ALT="$\delta \delta G_{H}^{3}$">is the bonus free energy for triloops ortetraloops listed in the <SMALL>TRILOOP</SMALL> or <SMALL>TLOOP</SMALL> files. This value is0 for loops not listed in the <SMALL>TRILOOP</SMALL> or <SMALL>TLOOP</SMALL> files and forloop sizes > 4,<DT>4.<DD><!-- MATH: $\delta \delta G_{H}^{4}$ --><IMG WIDTH="43" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img40.gif" ALT="$\delta \delta G_{H}^{4}$">is the bonus or penalty free energy for special cases not covered by the above.</DL><P>A 2-loop, <B>L</B>is closed by a base pair <I>i</I>.<I>j</I> and contains asingle base pair, <I>i</I>'.<I>j</I>', satisfying <I>i</I> < <I>i</I>' < <I>j</I>' < <I>j</I>. In this case,the loop size, l<SUB>s</SUB>(<B>L</B>),can be written as:<BR><P></P><DIV ALIGN="CENTER"><I>l</I><SUB>s</SUB>(<B>L</B>) = <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) + <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>),</DIV><BR>where<I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = <I>i'-i-1</I>and <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) = <I>j-j'-1</I>.<P>A 2-loop of size 0 is called a <I>stacked pair</I>. This refers tothe stacking between the <I>i</I>.<I>j</I> and immediately adjacent <!-- MATH: $i\!+\!1.j\!-\!1$ --><IMG WIDTH="65" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img45.gif" ALT="$i\!+\!1.j\!-\!1$">basepair contained in the loop. Free energies for these loops are storedin a file named <I>stack.dg</I>, or <I>stack.TC</I>, where <I>TC</I> is atemperature, as defined above. The layout is the same as for the<I>tstackh</I> file. A portion of such a file is given in Figure<A HREF="node5.html#STK">4</A>. A group of 2 or more consecutive base pairs is called a<I>helix</I>. The first and last are the closing base pairs of thehelix. They may be written as <I>i</I>.<I>j</I> and <I>i</I>'.<I>j</I>', where <!-- MATH: $i < i' < j' <j$ --><I>i</I> < <I>i</I>' < <I>j</I>' <<I>j</I>. Then <I>i</I>.<I>j</I> is called the external closing base pair and <I>i</I>'.<I>j</I>' iscalled the internal closing base pair. This nomenclature is used forcircular RNA as well, even though it depends on the choice of origin.<P><BR><DIV ALIGN="CENTER"><A NAME="STK"> </A><A NAME="815"> </A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 4:</STRONG>Sample free energies in kcal/mole for CG basepairs stacked over all possible base pairs, XY. X refers to row andY refers to column, in the order A, C, G and U respectively. Entriesdenoted by an isolated period, `.', are undefined, and may beconsidered as <IMG WIDTH="32" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img2.gif" ALT="$+\infty $">.</CAPTION><TR><TD><PRE> 5' --> 3' CX GY 3' <-- 5' Y: A C G U ----------------------X:A | . . . -2.1 C | . . -3.3 . G | . -2.4 . -1.4 U | -2.1 . -2.1 . </PRE></TD></TR></TABLE></DIV><BR><P>Only Watson-Crick and wobble GU pairs are allowed as <I>bona fide</I>base pairs, even though the software is written to allow for any basepairs. The reason is that nearest neighbor rules break down fornon-canonical, even GU base pairs, and that mismatches must instead betreated as small, symmetric interior loops. Note that the stacks<!-- MATH: $\begin{array}{ccc}5' & --> & 3' \\ & WX \\ & ZY \\ 3' & <-- & 5'\end{array}and\begin{array}{ccc} 5'& -->& 3' \\ & YZ \\ & XW \\ 3' & <-- & 5' \end{array}$ --><IMG WIDTH="258" HEIGHT="92" ALIGN="MIDDLE" BORDER="0" SRC="img47.gif" ALT="$\begin{array}{ccc}5' & --> & 3' \\& WX \\& ZY \\3' & <-- & 5'\end{......in{array}{ccc}5'& -->& 3' \\& YZ \\& XW \\3' & <-- & 5'\end{array}$">are identical, and yet formally different for <IMG WIDTH="55" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img48.gif" ALT="$W \neq Y$">and <IMG WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img49.gif" ALT="$X \neqZ$">.These stacked pairs are stored twice in the file, andthe <I>mfold</I> software checks for symmetry. This is an example ofbuilt in redundancy as a check on precision.<P>A 2-loop, L of size > 0 is called a <I>bulge loop</I> if<I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = 0or <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) = 0and an interior loopif <B>both</B> <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = 0and <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) = 0.<P>Bulge loops up to size 30 are assigned free energies from the <I>loop</I> file (See Figure <A HREF="node5.html#LOOP">1</A>). For larger bulge loops, equation<A HREF="node5.html#DDGLOG2">2</A> is used. When a bulge loop has size 1, the stackingfree energy for base pairs <I>i</I>.<I>j</I> and <I>i</I>'.<I>j</I>' are used (from the <I>stack</I> file).<P>Interior loops have size <IMG WIDTH="28" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img54.gif" ALT="$\geq 2$">.If <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) = <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>), the loop is called <I>symmetric</I>; otherwise, it is <I>asymmetric</I>, or lopsided. The asymmetry of an interior loop, a(<B>L</B>) is defined by:<BR><P></P><DIV ALIGN="CENTER"><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="ASYM"> </A>a(<B>L</B>) = <B>|</B> <I>l</I><SUB>s</SUB><SUP>1</SUP>(<B>L</B>) - <I>l</I><SUB>s</SUB><SUP>2</SUP>(<B>L</B>) <B>|</B></TD><TD WIDTH=10 ALIGN="RIGHT">(4)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P><P>The free energy, <!-- MATH: $\delta \delta G_{I}$ --><IMG WIDTH="39" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" SRC="img57.gif" ALT="$\delta \delta G_{I}$">,of an interior loop is the sum of 4components:<BR><P></P><DIV ALIGN="CENTER"><!-- MATH: \begin{equation}\delta \delta G_{I} = \delta \delta G_{I}^{1} + \delta \delta G_{I}^{2} + \delta \delta G_{I}^{3} + \delta \delta G_{I}^{4}.\end{equation} --><TABLE WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="DDGI"> </A><IMG WIDTH="259" HEIGHT="28" SRC="img58.gif" ALT="\begin{displaymath}\delta \delta G_{I} = \delta \delta G_{I}^{1} + \delta \delta G_{I}^{2} + \delta \delta G_{I}^{3} + \delta \delta G_{I}^{4}.\end{displaymath}"></TD><TD WIDTH=10 ALIGN="RIGHT">(5)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P><P><DL COMPACT><DT>1.<DD><!-- MATH: $\delta \delta G_{I}^{1}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img59.gif" ALT="$\delta \delta G_{I}^{1}$">is the size dependent contribution from the <I>loop</I>file, or from equation <A HREF="node5.html#DDGLOG2">2</A> for sizes > 30.<DT>2.<DD><!-- MATH: $\delta \delta G_{I}^{2}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img60.gif" ALT="$\delta \delta G_{I}^{2}$">and <!-- MATH: $\delta \delta G_{I}^{3}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img61.gif" ALT="$\delta \delta G_{I}^{3}$">are terminal mismatch stackingfree energies, taken from the <I>tstacki</I> file. The format of thisfile is identical to the format of the <I>tstackh</I> file. There are 2terms because of the terminal stacking of both <I>r</I><SUB><I>i</I>+1</SUB> and <I>r</I><SUB><I>j</I>-1</SUB>on the <I>i</I>.<I>j</I> base pair, and of both <I>r</I><SUB><I>i</I>'-1</SUB> and <I>r</I><SUB><I>j</I>'+1</SUB> on the<I>i</I>'.<I>j</I>' base pair. This may be visualized as<BR><DIV ALIGN="CENTER"><!-- MATH: \begin{eqnarray}\begin{array}{ccccc}{\rm 5'}-&r_{i}&-&r_{i+1}&-{\rm 3'} \\& \bullet & & \circ \\{\rm 3'}-&r_{j}&-&r_{j-1}&-{\rm 5'}\end{array} \: \: {\rm and} \: \:\begin{array}{ccccc}{\rm 5'}-&r_{j'}&-&r_{j'+1}&-{\rm 3'} \\ & \bullet & & \circ \\{\rm 3'}-&r_{i'}&-&r_{i'-1}&-{\rm 5'},\end{array} \nonumber\end{eqnarray} --> <IMG WIDTH="427" HEIGHT="73" ALIGN="MIDDLE" BORDER="0" SRC="img62.gif" ALT="$\displaystyle \begin{array}{ccccc}{\rm 5'}-&r_{i}&-&r_{i+1}&-{\rm 3'} \\& \b...... \\& \bullet & & \circ \\{\rm 3'}-&r_{i'}&-&r_{i'-1}&-{\rm 5'},\end{array}$"></DIV><BR CLEAR="ALL"><P></P>where <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img63.gif" ALT="$\bullet$">denotes a base pair and <IMG WIDTH="11" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img64.gif" ALT="$\circ$">denotes a mismatched pair.<DT>3.<DD><!-- MATH: $\delta \delta G_{I}^{4}$ --><IMG WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0" SRC="img65.gif" ALT="$\delta \delta G_{I}^{4}$">is the asymmetry penalty, and is a function ofa(<B>L</B>) defined in equation <A HREF="node5.html#ASYM">4</A>. The penalty is 0 forsymmetric interior loops. The asymmetric penalty free energies comefrom the <I>miscloop.dg</I> or <I>miscloop.TC</I> file.</DL><P>Equation <A HREF="node5.html#DDGI">5</A> is now used only for loops of size > 4 or ofasymmetry > 1. This means that special rules apply to 1 × 1, 1 × 2 and 2 × 2interior loops. Free energies for thesesymmetric and almost symmetric interior loops are stored in files <I>sint2.dg</I>, <I>asint1x2.dg</I> and <I>sint4.dg</I>, respectively. Asabove, the suffix <I>TC</I> is used in place of <I>dg</I> when explicitattention is paid to temperature. These files list all possible valuesof the single stranded bases, and all possible Watson-Crick and GUbase pair closings. The <I>sint2</I> file comprises a 6 × 6 array of 4 × 4 tables. There is a table for all possible 6 × 6 closing base pairs. The free energy values for each choiceof closing base pairs are arranged in 4 × 4 tables. The term``closing base pairs'' refers to the closing base pair of the loop andthe contained base pair of the loop, as in the strict definition of aloop. An example of such a table is given in Figure <A HREF="node5.html#SINT2AND12">5</A>.<P><BR><DIV ALIGN="CENTER"><A NAME="SINT2AND12"> </A><A NAME="817"> </A><TABLE WIDTH="50%"><CAPTION><STRONG>Figure 5:</STRONG>Left: Free energies for all 1 × 1interior loops in DNA closed by a CG and an AT base pair. Right: Freeenergies for all 1 × 2 interior loops in RNA closed by a CG andan AU base pair, with a single stranded U 3' to the double strandedU. As in similar Figures, X refers to row and Y to column.</CAPTION><TR><TD><PRE> 5' --> 3' 5' --> 3' X X C A C A G T G U Y YA 3' <-- 5' 3' <-- 5' Y: A C G T Y: A C G U --------------------- --------------------- X:A | 1.1 2.1 0.8 1.0 X:A | 3.2 3.0 2.4 4.8 C | 1.7 1.8 1.0 1.4 C | 3.1 3.0 4.8 3.0 G | 0.5 1.0 0.3 2.0 G | 2.5 4.8 1.6 4.8 T | 1.0 1.4 2.0 0.6 U | 4.8 4.8 4.8 4.8 </PRE></TD></TR></TABLE></DIV><BR><P>The <I>asint1x2</I> file comprises a 24 row by 6 column array of 4 × 4 tables. There is a 4 × 4 table for all possible 6 × 6closing base pairs and choice of one of the singlestranded bases. The free energy values for each choice of closing basepairs and a single stranded base are arranged in 4 × 4tables. An example of these tables is given in Figure <A HREF="node5.html#SINT2AND12">5</A>.<P>Finally, the <I>sint4</I> file contains 36 16 × 16tables, 1 for each pair of closing base pairs. A 2 × 2 interior loop canhave 4<SUP>4</SUP> combinations of single stranded bases. If, for example,the loop is closed by a GC base pair and an AU base pair, we can writeit as:<PRE> 5' ------> 3' G \/ \_/ A C /\ | U 3' <------ 5'</PRE>Both the large `X' and large `Y' refer to an unmatched pair of
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -