⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uaccess.h

📁 嵌入式系统设计与实验教材二源码linux内核移植与编译
💻 H
字号:
#ifndef __ALPHA_UACCESS_H#define __ALPHA_UACCESS_H#include <linux/errno.h>#include <linux/sched.h>/* * The fs value determines whether argument validity checking should be * performed or not.  If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * Or at least it did once upon a time.  Nowadays it is a mask that * defines which bits of the address space are off limits.  This is a * wee bit faster than the above. * * For historical reasons, these macros are grossly misnamed. */#define KERNEL_DS	((mm_segment_t) { 0UL })#define USER_DS		((mm_segment_t) { -0x40000000000UL })#define VERIFY_READ	0#define VERIFY_WRITE	1#define get_fs()  (current->thread.fs)#define get_ds()  (KERNEL_DS)#define set_fs(x) (current->thread.fs = (x))#define segment_eq(a,b)	((a).seg == (b).seg)/* * Is a address valid? This does a straighforward calculation rather * than tests. * * Address valid if: *  - "addr" doesn't have any high-bits set *  - AND "size" doesn't have any high-bits set *  - AND "addr+size" doesn't have any high-bits set *  - OR we are in kernel mode. */#define __access_ok(addr,size,segment) \	(((segment).seg & (addr | size | (addr+size))) == 0)#define access_ok(type,addr,size) \	__access_ok(((unsigned long)(addr)),(size),get_fs())extern inline int verify_area(int type, const void * addr, unsigned long size){	return access_ok(type,addr,size) ? 0 : -EFAULT;}/* * These are the main single-value transfer routines.  They automatically * use the right size if we just have the right pointer type. * * As the alpha uses the same address space for kernel and user * data, we can just do these as direct assignments.  (Of course, the * exception handling means that it's no longer "just"...) * * Careful to not * (a) re-use the arguments for side effects (sizeof/typeof is ok) * (b) require any knowledge of processes at this stage */#define put_user(x,ptr) \  __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs())#define get_user(x,ptr) \  __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs())/* * The "__xxx" versions do not do address space checking, useful when * doing multiple accesses to the same area (the programmer has to do the * checks by hand with "access_ok()") */#define __put_user(x,ptr) \  __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))#define __get_user(x,ptr) \  __get_user_nocheck((x),(ptr),sizeof(*(ptr)))  /* * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to * encode the bits we need for resolving the exception.  See the * more extensive comments with fixup_inline_exception below for * more information. */extern void __get_user_unknown(void);#define __get_user_nocheck(x,ptr,size)				\({								\	long __gu_err = 0, __gu_val;				\	switch (size) {						\	  case 1: __get_user_8(ptr); break;			\	  case 2: __get_user_16(ptr); break;			\	  case 4: __get_user_32(ptr); break;			\	  case 8: __get_user_64(ptr); break;			\	  default: __get_user_unknown(); break;			\	}							\	(x) = (__typeof__(*(ptr))) __gu_val;			\	__gu_err;						\})#define __get_user_check(x,ptr,size,segment)			\({								\	long __gu_err = -EFAULT, __gu_val = 0;			\	const __typeof__(*(ptr)) *__gu_addr = (ptr);		\	if (__access_ok((long)__gu_addr,size,segment)) {	\		__gu_err = 0;					\		switch (size) {					\		  case 1: __get_user_8(__gu_addr); break;	\		  case 2: __get_user_16(__gu_addr); break;	\		  case 4: __get_user_32(__gu_addr); break;	\		  case 8: __get_user_64(__gu_addr); break;	\		  default: __get_user_unknown(); break;		\		}						\	}							\	(x) = (__typeof__(*(ptr))) __gu_val;			\	__gu_err;						\})struct __large_struct { unsigned long buf[100]; };#define __m(x) (*(struct __large_struct *)(x))#define __get_user_64(addr)				\	__asm__("1: ldq %0,%2\n"			\	"2:\n"						\	".section __ex_table,\"a\"\n"			\	"	.gprel32 1b\n"				\	"	lda %0, 2b-1b(%1)\n"			\	".previous"					\		: "=r"(__gu_val), "=r"(__gu_err)	\		: "m"(__m(addr)), "1"(__gu_err))#define __get_user_32(addr)				\	__asm__("1: ldl %0,%2\n"			\	"2:\n"						\	".section __ex_table,\"a\"\n"			\	"	.gprel32 1b\n"				\	"	lda %0, 2b-1b(%1)\n"			\	".previous"					\		: "=r"(__gu_val), "=r"(__gu_err)	\		: "m"(__m(addr)), "1"(__gu_err))#ifdef __alpha_bwx__/* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */#define __get_user_16(addr)				\	__asm__("1: ldwu %0,%2\n"			\	"2:\n"						\	".section __ex_table,\"a\"\n"			\	"	.gprel32 1b\n"				\	"	lda %0, 2b-1b(%1)\n"			\	".previous"					\		: "=r"(__gu_val), "=r"(__gu_err)	\		: "m"(__m(addr)), "1"(__gu_err))#define __get_user_8(addr)				\	__asm__("1: ldbu %0,%2\n"			\	"2:\n"						\	".section __ex_table,\"a\"\n"			\	"	.gprel32 1b\n"				\	"	lda %0, 2b-1b(%1)\n"			\	".previous"					\		: "=r"(__gu_val), "=r"(__gu_err)	\		: "m"(__m(addr)), "1"(__gu_err))#else/* Unfortunately, we can't get an unaligned access trap for the sub-word   load, so we have to do a general unaligned operation.  */#define __get_user_16(addr)						\{									\	long __gu_tmp;							\	__asm__("1: ldq_u %0,0(%3)\n"					\	"2:	ldq_u %1,1(%3)\n"					\	"	extwl %0,%3,%0\n"					\	"	extwh %1,%3,%1\n"					\	"	or %0,%1,%0\n"						\	"3:\n"								\	".section __ex_table,\"a\"\n"					\	"	.gprel32 1b\n"						\	"	lda %0, 3b-1b(%2)\n"					\	"	.gprel32 2b\n"						\	"	lda %0, 2b-1b(%2)\n"					\	".previous"							\		: "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err)	\		: "r"(addr), "2"(__gu_err));				\}#define __get_user_8(addr)						\	__asm__("1: ldq_u %0,0(%2)\n"					\	"	extbl %0,%2,%0\n"					\	"2:\n"								\	".section __ex_table,\"a\"\n"					\	"	.gprel32 1b\n"						\	"	lda %0, 2b-1b(%1)\n"					\	".previous"							\		: "=&r"(__gu_val), "=r"(__gu_err)			\		: "r"(addr), "1"(__gu_err))#endifextern void __put_user_unknown(void);#define __put_user_nocheck(x,ptr,size)				\({								\	long __pu_err = 0;					\	switch (size) {						\	  case 1: __put_user_8(x,ptr); break;			\	  case 2: __put_user_16(x,ptr); break;			\	  case 4: __put_user_32(x,ptr); break;			\	  case 8: __put_user_64(x,ptr); break;			\	  default: __put_user_unknown(); break;			\	}							\	__pu_err;						\})#define __put_user_check(x,ptr,size,segment)			\({								\	long __pu_err = -EFAULT;				\	__typeof__(*(ptr)) *__pu_addr = (ptr);			\	if (__access_ok((long)__pu_addr,size,segment)) {	\		__pu_err = 0;					\		switch (size) {					\		  case 1: __put_user_8(x,__pu_addr); break;	\		  case 2: __put_user_16(x,__pu_addr); break;	\		  case 4: __put_user_32(x,__pu_addr); break;	\		  case 8: __put_user_64(x,__pu_addr); break;	\		  default: __put_user_unknown(); break;		\		}						\	}							\	__pu_err;						\})/* * The "__put_user_xx()" macros tell gcc they read from memory * instead of writing: this is because they do not write to * any memory gcc knows about, so there are no aliasing issues */#define __put_user_64(x,addr)					\__asm__ __volatile__("1: stq %r2,%1\n"				\	"2:\n"							\	".section __ex_table,\"a\"\n"				\	"	.gprel32 1b\n"					\	"	lda $31,2b-1b(%0)\n"				\	".previous"						\		: "=r"(__pu_err)				\		: "m" (__m(addr)), "rJ" (x), "0"(__pu_err))#define __put_user_32(x,addr)					\__asm__ __volatile__("1: stl %r2,%1\n"				\	"2:\n"							\	".section __ex_table,\"a\"\n"				\	"	.gprel32 1b\n"					\	"	lda $31,2b-1b(%0)\n"				\	".previous"						\		: "=r"(__pu_err)				\		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))#ifdef __alpha_bwx__/* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */#define __put_user_16(x,addr)					\__asm__ __volatile__("1: stw %r2,%1\n"				\	"2:\n"							\	".section __ex_table,\"a\"\n"				\	"	.gprel32 1b\n"					\	"	lda $31,2b-1b(%0)\n"				\	".previous"						\		: "=r"(__pu_err)				\		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))#define __put_user_8(x,addr)					\__asm__ __volatile__("1: stb %r2,%1\n"				\	"2:\n"							\	".section __ex_table,\"a\"\n"				\	"	.gprel32 1b\n"					\	"	lda $31,2b-1b(%0)\n"				\	".previous"						\		: "=r"(__pu_err)				\		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))#else/* Unfortunately, we can't get an unaligned access trap for the sub-word   write, so we have to do a general unaligned operation.  */#define __put_user_16(x,addr)					\{								\	long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4;	\	__asm__ __volatile__(					\	"1:	ldq_u %2,1(%5)\n"				\	"2:	ldq_u %1,0(%5)\n"				\	"	inswh %6,%5,%4\n"				\	"	inswl %6,%5,%3\n"				\	"	mskwh %2,%5,%2\n"				\	"	mskwl %1,%5,%1\n"				\	"	or %2,%4,%2\n"					\	"	or %1,%3,%1\n"					\	"3:	stq_u %2,1(%5)\n"				\	"4:	stq_u %1,0(%5)\n"				\	"5:\n"							\	".section __ex_table,\"a\"\n"				\	"	.gprel32 1b\n"					\	"	lda $31, 5b-1b(%0)\n"				\	"	.gprel32 2b\n"					\	"	lda $31, 5b-2b(%0)\n"				\	"	.gprel32 3b\n"					\	"	lda $31, 5b-3b(%0)\n"				\	"	.gprel32 4b\n"					\	"	lda $31, 5b-4b(%0)\n"				\	".previous"						\		: "=r"(__pu_err), "=&r"(__pu_tmp1),		\		  "=&r"(__pu_tmp2), "=&r"(__pu_tmp3),		\		  "=&r"(__pu_tmp4)				\		: "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \}#define __put_user_8(x,addr)					\{								\	long __pu_tmp1, __pu_tmp2;				\	__asm__ __volatile__(					\	"1:	ldq_u %1,0(%4)\n"				\	"	insbl %3,%4,%2\n"				\	"	mskbl %1,%4,%1\n"				\	"	or %1,%2,%1\n"					\	"2:	stq_u %1,0(%4)\n"				\	"3:\n"							\	".section __ex_table,\"a\"\n"				\	"	.gprel32 1b\n"					\	"	lda $31, 3b-1b(%0)\n"				\	"	.gprel32 2b\n"					\	"	lda $31, 3b-2b(%0)\n"				\	".previous"						\		: "=r"(__pu_err),				\	  	  "=&r"(__pu_tmp1), "=&r"(__pu_tmp2)		\		: "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \}#endif/* * Complex access routines */extern void __copy_user(void);extern inline long__copy_tofrom_user_nocheck(void *to, const void *from, long len){	/* This little bit of silliness is to get the GP loaded for	   a function that ordinarily wouldn't.  Otherwise we could	   have it done by the macro directly, which can be optimized	   the linker.  */	register void * pv __asm__("$27") = __copy_user;	register void * __cu_to __asm__("$6") = to;	register const void * __cu_from __asm__("$7") = from;	register long __cu_len __asm__("$0") = len;	__asm__ __volatile__(		"jsr $28,(%3),__copy_user\n\tldgp $29,0($28)"		: "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to), "=r"(pv)		: "0" (__cu_len), "1" (__cu_from), "2" (__cu_to), "3"(pv)		: "$1","$2","$3","$4","$5","$28","memory");	return __cu_len;}extern inline long__copy_tofrom_user(void *to, const void *from, long len, const void *validate){	if (__access_ok((long)validate, len, get_fs())) {		register void * pv __asm__("$27") = __copy_user;		register void * __cu_to __asm__("$6") = to;		register const void * __cu_from __asm__("$7") = from;		register long __cu_len __asm__("$0") = len;		__asm__ __volatile__(			"jsr $28,(%3),__copy_user\n\tldgp $29,0($28)"			: "=r"(__cu_len), "=r"(__cu_from), "=r"(__cu_to),			  "=r" (pv)			: "0" (__cu_len), "1" (__cu_from), "2" (__cu_to), 			  "3" (pv)			: "$1","$2","$3","$4","$5","$28","memory");		len = __cu_len;	}	return len;}#define __copy_to_user(to,from,n)   __copy_tofrom_user_nocheck((to),(from),(n))#define __copy_from_user(to,from,n) __copy_tofrom_user_nocheck((to),(from),(n))extern inline longcopy_to_user(void *to, const void *from, long n){	return __copy_tofrom_user(to, from, n, to);}extern inline longcopy_from_user(void *to, const void *from, long n){	return __copy_tofrom_user(to, from, n, from);}extern void __do_clear_user(void);extern inline long__clear_user(void *to, long len){	/* This little bit of silliness is to get the GP loaded for	   a function that ordinarily wouldn't.  Otherwise we could	   have it done by the macro directly, which can be optimized	   the linker.  */	register void * pv __asm__("$27") = __do_clear_user;	register void * __cl_to __asm__("$6") = to;	register long __cl_len __asm__("$0") = len;	__asm__ __volatile__(		"jsr $28,(%2),__do_clear_user\n\tldgp $29,0($28)"		: "=r"(__cl_len), "=r"(__cl_to), "=r"(pv)		: "0"(__cl_len), "1"(__cl_to), "2"(pv)		: "$1","$2","$3","$4","$5","$28","memory");	return __cl_len;}extern inline longclear_user(void *to, long len){	if (__access_ok((long)to, len, get_fs())) {		register void * pv __asm__("$27") = __do_clear_user;		register void * __cl_to __asm__("$6") = to;		register long __cl_len __asm__("$0") = len;		__asm__ __volatile__(			"jsr $28,(%2),__do_clear_user\n\tldgp $29,0($28)"			: "=r"(__cl_len), "=r"(__cl_to), "=r"(pv)			: "0"(__cl_len), "1"(__cl_to), "2"(pv)			: "$1","$2","$3","$4","$5","$28","memory");		len = __cl_len;	}	return len;}/* Returns: -EFAULT if exception before terminator, N if the entire   buffer filled, else strlen.  */extern long __strncpy_from_user(char *__to, const char *__from, long __to_len);extern inline longstrncpy_from_user(char *to, const char *from, long n){	long ret = -EFAULT;	if (__access_ok((long)from, 0, get_fs()))		ret = __strncpy_from_user(to, from, n);	return ret;}/* Returns: 0 if bad, string length+1 (memory size) of string if ok */extern long __strlen_user(const char *);extern inline long strlen_user(const char *str){	return access_ok(VERIFY_READ,str,0) ? __strlen_user(str) : 0;}/* Returns: 0 if exception before NUL or reaching the supplied limit (N), * a value greater than N if the limit would be exceeded, else strlen.  */extern long __strnlen_user(const char *, long);extern inline long strnlen_user(const char *str, long n){	return access_ok(VERIFY_READ,str,0) ? __strnlen_user(str, n) : 0;}/* * About the exception table: * * - insn is a 32-bit offset off of the kernel's or module's gp. * - nextinsn is a 16-bit offset off of the faulting instruction *   (not off of the *next* instruction as branches are). * - errreg is the register in which to place -EFAULT. * - valreg is the final target register for the load sequence *   and will be zeroed. * * Either errreg or valreg may be $31, in which case nothing happens. * * The exception fixup information "just so happens" to be arranged * as in a MEM format instruction.  This lets us emit our three * values like so: * *      lda valreg, nextinsn(errreg) * */struct exception_table_entry{	signed int insn;	union exception_fixup {		unsigned unit;		struct {			signed int nextinsn : 16;			unsigned int errreg : 5;			unsigned int valreg : 5;		} bits;	} fixup;};/* Returns 0 if exception not found and fixup.unit otherwise.  */extern unsigned search_exception_table(unsigned long, unsigned long);/* Returns the new pc */#define fixup_exception(map_reg, fixup_unit, pc)		\({								\	union exception_fixup __fie_fixup;			\	__fie_fixup.unit = fixup_unit;				\	if (__fie_fixup.bits.valreg != 31)			\		map_reg(__fie_fixup.bits.valreg) = 0;		\	if (__fie_fixup.bits.errreg != 31)			\		map_reg(__fie_fixup.bits.errreg) = -EFAULT;	\	(pc) + __fie_fixup.bits.nextinsn;			\})#endif /* __ALPHA_UACCESS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -