⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 op-1.h

📁 嵌入式系统设计与实验教材二源码linux内核移植与编译
💻 H
字号:
/* Software floating-point emulation.   Basic one-word fraction declaration and manipulation.   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.   This file is part of the GNU C Library.   Contributed by Richard Henderson (rth@cygnus.com),		  Jakub Jelinek (jj@ultra.linux.cz),		  David S. Miller (davem@redhat.com) and		  Peter Maydell (pmaydell@chiark.greenend.org.uk).   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Library General Public License as   published by the Free Software Foundation; either version 2 of the   License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Library General Public License for more details.   You should have received a copy of the GNU Library General Public   License along with the GNU C Library; see the file COPYING.LIB.  If   not, write to the Free Software Foundation, Inc.,   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */#ifndef    __MATH_EMU_OP_1_H__#define    __MATH_EMU_OP_1_H__#define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f#define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)#define _FP_FRAC_SET_1(X,I)	(X##_f = I)#define _FP_FRAC_HIGH_1(X)	(X##_f)#define _FP_FRAC_LOW_1(X)	(X##_f)#define _FP_FRAC_WORD_1(X,w)	(X##_f)#define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)#define _FP_FRAC_SLL_1(X,N)			\  do {						\    if (__builtin_constant_p(N) && (N) == 1)	\      X##_f += X##_f;				\    else					\      X##_f <<= (N);				\  } while (0)#define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)/* Right shift with sticky-lsb.  */#define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)#define __FP_FRAC_SRS_1(X,N,sz)						\   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))#define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)#define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)#define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f)#define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)/* Predicates */#define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)#define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)#define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)#define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)#define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)#define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)#define _FP_ZEROFRAC_1		0#define _FP_MINFRAC_1		1#define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0)/* * Unpack the raw bits of a native fp value.  Do not classify or * normalize the data. */#define _FP_UNPACK_RAW_1(fs, X, val)				\  do {								\    union _FP_UNION_##fs _flo; _flo.flt = (val);		\								\    X##_f = _flo.bits.frac;					\    X##_e = _flo.bits.exp;					\    X##_s = _flo.bits.sign;					\  } while (0)#define _FP_UNPACK_RAW_1_P(fs, X, val)				\  do {								\    union _FP_UNION_##fs *_flo =				\      (union _FP_UNION_##fs *)(val);				\								\    X##_f = _flo->bits.frac;					\    X##_e = _flo->bits.exp;					\    X##_s = _flo->bits.sign;					\  } while (0)/* * Repack the raw bits of a native fp value. */#define _FP_PACK_RAW_1(fs, val, X)				\  do {								\    union _FP_UNION_##fs _flo;					\								\    _flo.bits.frac = X##_f;					\    _flo.bits.exp  = X##_e;					\    _flo.bits.sign = X##_s;					\								\    (val) = _flo.flt;						\  } while (0)#define _FP_PACK_RAW_1_P(fs, val, X)				\  do {								\    union _FP_UNION_##fs *_flo =				\      (union _FP_UNION_##fs *)(val);				\								\    _flo->bits.frac = X##_f;					\    _flo->bits.exp  = X##_e;					\    _flo->bits.sign = X##_s;					\  } while (0)/* * Multiplication algorithms: *//* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the   multiplication immediately.  */#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\  do {									\    R##_f = X##_f * Y##_f;						\    /* Normalize since we know where the msb of the multiplicands	\       were (bit B), we know that the msb of the of the product is	\       at either 2B or 2B-1.  */					\    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\  } while (0)/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\  do {									\    _FP_W_TYPE _Z_f0, _Z_f1;						\    doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\    /* Normalize since we know where the msb of the multiplicands	\       were (bit B), we know that the msb of the of the product is	\       at either 2B or 2B-1.  */					\    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\    R##_f = _Z_f0;							\  } while (0)/* Finally, a simple widening multiply algorithm.  What fun!  */#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\  do {									\    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\									\    /* split the words in half */					\    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\									\    /* multiply the pieces */						\    _z_f0 = _xl * _yl;							\    _a_f0 = _xh * _yl;							\    _a_f1 = _xl * _yh;							\    _z_f1 = _xh * _yh;							\									\    /* reassemble into two full words */				\    if ((_a_f0 += _a_f1) < _a_f1)					\      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\    _FP_FRAC_ADD_2(_z, _z, _a);						\									\    /* normalize */							\    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\    R##_f = _z_f0;							\  } while (0)/* * Division algorithms: *//* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the   division immediately.  Give this macro either _FP_DIV_HELP_imm for   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you   choose will depend on what the compiler does with divrem4.  */#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\  do {							\    _FP_W_TYPE _q, _r;					\    X##_f <<= (X##_f < Y##_f				\	       ? R##_e--, _FP_WFRACBITS_##fs		\	       : _FP_WFRACBITS_##fs - 1);		\    doit(_q, _r, X##_f, Y##_f);				\    R##_f = _q | (_r != 0);				\  } while (0)/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd   that may be useful in this situation.  This first is for a primitive   that requires normalization, the second for one that does not.  Look   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\  do {									\    _FP_W_TYPE _nh, _nl, _q, _r, _y;					\									\    /* Normalize Y -- i.e. make the most significant bit set.  */	\    _y = Y##_f << _FP_WFRACXBITS_##fs;					\									\    /* Shift X op correspondingly high, that is, up one full word.  */	\    if (X##_f < Y##_f)							\      {									\	R##_e--;							\	_nl = 0;							\	_nh = X##_f;							\      }									\    else								\      {									\	_nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\	_nh = X##_f >> 1;						\      }									\    									\    udiv_qrnnd(_q, _r, _nh, _nl, _y);					\    R##_f = _q | (_r != 0);						\  } while (0)#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\  do {							\    _FP_W_TYPE _nh, _nl, _q, _r;			\    if (X##_f < Y##_f)					\      {							\	R##_e--;					\	_nl = X##_f << _FP_WFRACBITS_##fs;		\	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\      }							\    else						\      {							\	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\      }							\    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\    R##_f = _q | (_r != 0);				\  } while (0)    /* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. */ #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\  do {							\    while (q != _FP_WORK_ROUND)				\      {							\        T##_f = S##_f + q;				\        if (T##_f <= X##_f)				\          {						\            S##_f = T##_f + q;				\            X##_f -= T##_f;				\            R##_f += q;					\          }						\        _FP_FRAC_SLL_1(X, 1);				\        q >>= 1;					\      }							\    if (X##_f)						\      {							\	if (S##_f < X##_f)				\	  R##_f |= _FP_WORK_ROUND;			\	R##_f |= _FP_WORK_STICKY;			\      }							\  } while (0)/* * Assembly/disassembly for converting to/from integral types.   * No shifting or overflow handled here. */#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)/* * Convert FP values between word sizes */#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\  do {									\    D##_f = S##_f;							\    if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\      {									\	if (S##_c != FP_CLS_NAN)					\	  _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\			 _FP_WFRACBITS_##sfs);				\	else								\	  _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\      }									\    else								\      D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\  } while (0)#endif /* __MATH_EMU_OP_1_H__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -