⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 op-2.h

📁 嵌入式系统设计与实验教材二源码linux内核移植与编译
💻 H
📖 第 1 页 / 共 2 页
字号:
  } while (0)#define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\  do {									\    _FP_FRAC_DECL_4(_z);						\    _FP_W_TYPE _x[2], _y[2];						\    _x[0] = X##_f0; _x[1] = X##_f1;					\    _y[0] = Y##_f0; _y[1] = Y##_f1;					\									\    mpn_mul_n(_z_f, _x, _y, 2);						\									\    /* Normalize since we know where the msb of the multiplicands	\       were (bit B), we know that the msb of the of the product is	\       at either 2B or 2B-1.  */					\    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\    R##_f0 = _z_f[0];							\    R##_f1 = _z_f[1];							\  } while (0)/* Do at most 120x120=240 bits multiplication using double floating   point multiplication.  This is useful if floating point   multiplication has much bigger throughput than integer multiply.   It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits   between 106 and 120 only.     Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.   SETFETZ is a macro which will disable all FPU exceptions and set rounding   towards zero,  RESETFE should optionally reset it back.  */#define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe)	\  do {										\    static const double _const[] = {						\      /* 2^-24 */ 5.9604644775390625e-08,					\      /* 2^-48 */ 3.5527136788005009e-15,					\      /* 2^-72 */ 2.1175823681357508e-22,					\      /* 2^-96 */ 1.2621774483536189e-29,					\      /* 2^28 */ 2.68435456e+08,						\      /* 2^4 */ 1.600000e+01,							\      /* 2^-20 */ 9.5367431640625e-07,						\      /* 2^-44 */ 5.6843418860808015e-14,					\      /* 2^-68 */ 3.3881317890172014e-21,					\      /* 2^-92 */ 2.0194839173657902e-28,					\      /* 2^-116 */ 1.2037062152420224e-35};					\    double _a240, _b240, _c240, _d240, _e240, _f240, 				\	   _g240, _h240, _i240, _j240, _k240;					\    union { double d; UDItype i; } _l240, _m240, _n240, _o240,			\				   _p240, _q240, _r240, _s240;			\    UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;			\										\    if (wfracbits < 106 || wfracbits > 120)					\      abort();									\										\    setfetz;									\										\    _e240 = (double)(long)(X##_f0 & 0xffffff);					\    _j240 = (double)(long)(Y##_f0 & 0xffffff);					\    _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff);				\    _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff);				\    _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48));	\    _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48));	\    _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff);				\    _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff);				\    _a240 = (double)(long)(X##_f1 >> 32);					\    _f240 = (double)(long)(Y##_f1 >> 32);					\    _e240 *= _const[3];								\    _j240 *= _const[3];								\    _d240 *= _const[2];								\    _i240 *= _const[2];								\    _c240 *= _const[1];								\    _h240 *= _const[1];								\    _b240 *= _const[0];								\    _g240 *= _const[0];								\    _s240.d =							      _e240*_j240;\    _r240.d =						_d240*_j240 + _e240*_i240;\    _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240;\    _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\    _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\    _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;		\    _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;				\    _l240.d = _a240*_g240 + _b240*_f240;					\    _k240 =   _a240*_f240;							\    _r240.d += _s240.d;								\    _q240.d += _r240.d;								\    _p240.d += _q240.d;								\    _o240.d += _p240.d;								\    _n240.d += _o240.d;								\    _m240.d += _n240.d;								\    _l240.d += _m240.d;								\    _k240 += _l240.d;								\    _s240.d -= ((_const[10]+_s240.d)-_const[10]);				\    _r240.d -= ((_const[9]+_r240.d)-_const[9]);					\    _q240.d -= ((_const[8]+_q240.d)-_const[8]);					\    _p240.d -= ((_const[7]+_p240.d)-_const[7]);					\    _o240.d += _const[7];							\    _n240.d += _const[6];							\    _m240.d += _const[5];							\    _l240.d += _const[4];							\    if (_s240.d != 0.0) _y240 = 1;						\    if (_r240.d != 0.0) _y240 = 1;						\    if (_q240.d != 0.0) _y240 = 1;						\    if (_p240.d != 0.0) _y240 = 1;						\    _t240 = (DItype)_k240;							\    _u240 = _l240.i;								\    _v240 = _m240.i;								\    _w240 = _n240.i;								\    _x240 = _o240.i;								\    R##_f1 = (_t240 << (128 - (wfracbits - 1)))					\	     | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104));			\    R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1)))			\    	     | ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))			\    	     | ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))			\    	     | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))			\    	     | _y240;								\    resetfe;									\  } while (0)/* * Division algorithms: */#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\  do {									\    _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0;		\    if (_FP_FRAC_GT_2(X, Y))						\      {									\	_n_f2 = X##_f1 >> 1;						\	_n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\	_n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\      }									\    else								\      {									\	R##_e--;							\	_n_f2 = X##_f1;							\	_n_f1 = X##_f0;							\	_n_f0 = 0;							\      }									\									\    /* Normalize, i.e. make the most significant bit of the 		\       denominator set. */						\    _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs);				\									\    udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1);			\    umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0);				\    _r_f0 = _n_f0;							\    if (_FP_FRAC_GT_2(_m, _r))						\      {									\	R##_f1--;							\	_FP_FRAC_ADD_2(_r, Y, _r);					\	if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\	  {								\	    R##_f1--;							\	    _FP_FRAC_ADD_2(_r, Y, _r);					\	  }								\      }									\    _FP_FRAC_DEC_2(_r, _m);						\									\    if (_r_f1 == Y##_f1)						\      {									\	/* This is a special case, not an optimization			\	   (_r/Y##_f1 would not fit into UWtype).			\	   As _r is guaranteed to be < Y,  R##_f0 can be either		\	   (UWtype)-1 or (UWtype)-2.  But as we know what kind		\	   of bits it is (sticky, guard, round),  we don't care.	\	   We also don't care what the reminder is,  because the	\	   guard bit will be set anyway.  -jj */			\	R##_f0 = -1;							\      }									\    else								\      {									\	udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1);		\	umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0);			\	_r_f0 = 0;							\	if (_FP_FRAC_GT_2(_m, _r))					\	  {								\	    R##_f0--;							\	    _FP_FRAC_ADD_2(_r, Y, _r);					\	    if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\	      {								\		R##_f0--;						\		_FP_FRAC_ADD_2(_r, Y, _r);				\	      }								\	  }								\	if (!_FP_FRAC_EQ_2(_r, _m))					\	  R##_f0 |= _FP_WORK_STICKY;					\      }									\  } while (0)#define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\  do {									\    _FP_W_TYPE _x[4], _y[2], _z[4];					\    _y[0] = Y##_f0; _y[1] = Y##_f1;					\    _x[0] = _x[3] = 0;							\    if (_FP_FRAC_GT_2(X, Y))						\      {									\	R##_e++;							\	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) |	\		 X##_f1 >> (_FP_W_TYPE_SIZE -				\			    (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE)));	\	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE);	\      }									\    else								\      {									\	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) |	\		 X##_f1 >> (_FP_W_TYPE_SIZE -				\			    (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE)));	\	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE);	\      }									\									\    (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\    R##_f1 = _z[1];							\    R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\  } while (0)/* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. */ #define _FP_SQRT_MEAT_2(R, S, T, X, q)			\  do {							\    while (q)						\      {							\	T##_f1 = S##_f1 + q;				\	if (T##_f1 <= X##_f1)				\	  {						\	    S##_f1 = T##_f1 + q;			\	    X##_f1 -= T##_f1;				\	    R##_f1 += q;				\	  }						\	_FP_FRAC_SLL_2(X, 1);				\	q >>= 1;					\      }							\    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\    while (q != _FP_WORK_ROUND)				\      {							\	T##_f0 = S##_f0 + q;				\	T##_f1 = S##_f1;				\	if (T##_f1 < X##_f1 || 				\	    (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\	  {						\	    S##_f0 = T##_f0 + q;			\	    S##_f1 += (T##_f0 > S##_f0);		\	    _FP_FRAC_DEC_2(X, T);			\	    R##_f0 += q;				\	  }						\	_FP_FRAC_SLL_2(X, 1);				\	q >>= 1;					\      }							\    if (X##_f0 | X##_f1)				\      {							\	if (S##_f1 < X##_f1 || 				\	    (S##_f1 == X##_f1 && S##_f0 < X##_f0))	\	  R##_f0 |= _FP_WORK_ROUND;			\	R##_f0 |= _FP_WORK_STICKY;			\      }							\  } while (0)/* * Assembly/disassembly for converting to/from integral types.   * No shifting or overflow handled here. */#define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\  do {						\    if (rsize <= _FP_W_TYPE_SIZE)		\      r = X##_f0;				\    else					\      {						\	r = X##_f1;				\	r <<= _FP_W_TYPE_SIZE;			\	r += X##_f0;				\      }						\  } while (0)#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\  do {									\    X##_f0 = r;								\    X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\  } while (0)/* * Convert FP values between word sizes */#define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\  do {									\    if (S##_c != FP_CLS_NAN)						\      _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\		     _FP_WFRACBITS_##sfs);				\    else								\      _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\    D##_f = S##_f0;							\  } while (0)#define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\  do {									\    D##_f0 = S##_f;							\    D##_f1 = 0;								\    _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\  } while (0)#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -