📄 op-common.h
字号:
/* Software floating-point emulation. Common operations. Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Richard Henderson (rth@cygnus.com), Jakub Jelinek (jj@ultra.linux.cz), David S. Miller (davem@redhat.com) and Peter Maydell (pmaydell@chiark.greenend.org.uk). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */#ifndef __MATH_EMU_OP_COMMON_H__#define __MATH_EMU_OP_COMMON_H__#define _FP_DECL(wc, X) \ _FP_I_TYPE X##_c, X##_s, X##_e; \ _FP_FRAC_DECL_##wc(X)/* * Finish truely unpacking a native fp value by classifying the kind * of fp value and normalizing both the exponent and the fraction. */#define _FP_UNPACK_CANONICAL(fs, wc, X) \do { \ switch (X##_e) \ { \ default: \ _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \ _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ X##_e -= _FP_EXPBIAS_##fs; \ X##_c = FP_CLS_NORMAL; \ break; \ \ case 0: \ if (_FP_FRAC_ZEROP_##wc(X)) \ X##_c = FP_CLS_ZERO; \ else \ { \ /* a denormalized number */ \ _FP_I_TYPE _shift; \ _FP_FRAC_CLZ_##wc(_shift, X); \ _shift -= _FP_FRACXBITS_##fs; \ _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ X##_c = FP_CLS_NORMAL; \ FP_SET_EXCEPTION(FP_EX_DENORM); \ if (FP_DENORM_ZERO) \ { \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ X##_c = FP_CLS_ZERO; \ } \ } \ break; \ \ case _FP_EXPMAX_##fs: \ if (_FP_FRAC_ZEROP_##wc(X)) \ X##_c = FP_CLS_INF; \ else \ { \ X##_c = FP_CLS_NAN; \ /* Check for signaling NaN */ \ if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ FP_SET_EXCEPTION(FP_EX_INVALID); \ } \ break; \ } \} while (0)/* * Before packing the bits back into the native fp result, take care * of such mundane things as rounding and overflow. Also, for some * kinds of fp values, the original parts may not have been fully * extracted -- but that is ok, we can regenerate them now. */#define _FP_PACK_CANONICAL(fs, wc, X) \do { \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ X##_e += _FP_EXPBIAS_##fs; \ if (X##_e > 0) \ { \ _FP_ROUND(wc, X); \ if (_FP_FRAC_OVERP_##wc(fs, X)) \ { \ _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \ X##_e++; \ } \ else \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ if (X##_e >= _FP_EXPMAX_##fs) \ { \ /* overflow */ \ switch (FP_ROUNDMODE) \ { \ case FP_RND_NEAREST: \ X##_c = FP_CLS_INF; \ break; \ case FP_RND_PINF: \ if (!X##_s) X##_c = FP_CLS_INF; \ break; \ case FP_RND_MINF: \ if (X##_s) X##_c = FP_CLS_INF; \ break; \ } \ if (X##_c == FP_CLS_INF) \ { \ /* Overflow to infinity */ \ X##_e = _FP_EXPMAX_##fs; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ } \ else \ { \ /* Overflow to maximum normal */ \ X##_e = _FP_EXPMAX_##fs - 1; \ _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \ } \ FP_SET_EXCEPTION(FP_EX_OVERFLOW); \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ } \ } \ else \ { \ /* we've got a denormalized number */ \ X##_e = -X##_e + 1; \ if (X##_e <= _FP_WFRACBITS_##fs) \ { \ _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ _FP_ROUND(wc, X); \ if (_FP_FRAC_HIGH_##fs(X) \ & (_FP_OVERFLOW_##fs >> 1)) \ { \ X##_e = 1; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ } \ else \ { \ X##_e = 0; \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \ } \ } \ else \ { \ /* underflow to zero */ \ X##_e = 0; \ if (!_FP_FRAC_ZEROP_##wc(X)) \ { \ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ _FP_ROUND(wc, X); \ _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \ } \ FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \ } \ } \ break; \ \ case FP_CLS_ZERO: \ X##_e = 0; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ \ case FP_CLS_INF: \ X##_e = _FP_EXPMAX_##fs; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ \ case FP_CLS_NAN: \ X##_e = _FP_EXPMAX_##fs; \ if (!_FP_KEEPNANFRACP) \ { \ _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ X##_s = _FP_NANSIGN_##fs; \ } \ else \ _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \ break; \ } \} while (0)/* This one accepts raw argument and not cooked, returns * 1 if X is a signaling NaN. */#define _FP_ISSIGNAN(fs, wc, X) \({ \ int __ret = 0; \ if (X##_e == _FP_EXPMAX_##fs) \ { \ if (!_FP_FRAC_ZEROP_##wc(X) \ && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ __ret = 1; \ } \ __ret; \})/* * Main addition routine. The input values should be cooked. */#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \do { \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ { \ /* shift the smaller number so that its exponent matches the larger */ \ _FP_I_TYPE diff = X##_e - Y##_e; \ \ if (diff < 0) \ { \ diff = -diff; \ if (diff <= _FP_WFRACBITS_##fs) \ _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ else if (!_FP_FRAC_ZEROP_##wc(X)) \ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ R##_e = Y##_e; \ } \ else \ { \ if (diff > 0) \ { \ if (diff <= _FP_WFRACBITS_##fs) \ _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ else if (!_FP_FRAC_ZEROP_##wc(Y)) \ _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ } \ R##_e = X##_e; \ } \ \ R##_c = FP_CLS_NORMAL; \ \ if (X##_s == Y##_s) \ { \ R##_s = X##_s; \ _FP_FRAC_ADD_##wc(R, X, Y); \ if (_FP_FRAC_OVERP_##wc(fs, R)) \ { \ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ R##_e++; \ } \ } \ else \ { \ R##_s = X##_s; \ _FP_FRAC_SUB_##wc(R, X, Y); \ if (_FP_FRAC_ZEROP_##wc(R)) \ { \ /* return an exact zero */ \ if (FP_ROUNDMODE == FP_RND_MINF) \ R##_s |= Y##_s; \ else \ R##_s &= Y##_s; \ R##_c = FP_CLS_ZERO; \ } \ else \ { \ if (_FP_FRAC_NEGP_##wc(R)) \ { \ _FP_FRAC_SUB_##wc(R, Y, X); \ R##_s = Y##_s; \ } \ \ /* renormalize after subtraction */ \ _FP_FRAC_CLZ_##wc(diff, R); \ diff -= _FP_WFRACXBITS_##fs; \ if (diff) \ { \ R##_e -= diff; \ _FP_FRAC_SLL_##wc(R, diff); \ } \ } \ } \ break; \ } \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ R##_e = X##_e; \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, X); \ R##_s = X##_s; \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ R##_e = Y##_e; \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ _FP_FRAC_COPY_##wc(R, Y); \ R##_s = Y##_s; \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ if (X##_s != Y##_s) \ { \ /* +INF + -INF => NAN */ \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ R##_s = _FP_NANSIGN_##fs; \ R##_c = FP_CLS_NAN; \ FP_SET_EXCEPTION(FP_EX_INVALID); \ break; \ } \ /* FALLTHRU */ \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ R##_s = X##_s; \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ R##_s = Y##_s; \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ /* make sure the sign is correct */ \ if (FP_ROUNDMODE == FP_RND_MINF) \ R##_s = X##_s | Y##_s; \ else \ R##_s = X##_s & Y##_s; \ R##_c = FP_CLS_ZERO; \ break; \ \ default: \ abort(); \ } \} while (0)#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')#define _FP_SUB(fs, wc, R, X, Y) \ do { \ if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \ _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \ } while (0)/* * Main negation routine. FIXME -- when we care about setting exception * bits reliably, this will not do. We should examine all of the fp classes. */#define _FP_NEG(fs, wc, R, X) \ do { \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ R##_e = X##_e; \ R##_s = 1 ^ X##_s; \ } while (0)/* * Main multiplication routine. The input values should be cooked. */#define _FP_MUL(fs, wc, R, X, Y) \do { \ R##_s = X##_s ^ Y##_s; \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ R##_c = FP_CLS_NORMAL; \ R##_e = X##_e + Y##_e + 1; \ \ _FP_MUL_MEAT_##fs(R,X,Y); \ \ if (_FP_FRAC_OVERP_##wc(fs, R)) \ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ else \ R##_e--; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ R##_s = X##_s; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ R##_s = Y##_s; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, Y); \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -