📄 setup.c
字号:
* (uncached access range) * * The EFI memory map is the "prefered" location to get the I/O port * space base, rather the relying on AR.KR0. This should become more * clear in future SAL specs. We'll fall back to getting it out of * AR.KR0 if no appropriate entry is found in the memory map. */ ia64_iobase = efi_get_iobase(); if (ia64_iobase) /* set AR.KR0 since this is all we use it for anyway */ ia64_set_kr(IA64_KR_IO_BASE, ia64_iobase); else { ia64_iobase = ia64_get_kr(IA64_KR_IO_BASE); printk("No I/O port range found in EFI memory map, falling back to AR.KR0\n"); printk("I/O port base = 0x%lx\n", ia64_iobase); } ia64_iobase = __IA64_UNCACHED_OFFSET | (ia64_iobase & ~PAGE_OFFSET);#ifdef CONFIG_SMP cpu_physical_id(0) = hard_smp_processor_id();#endif cpu_init(); /* initialize the bootstrap CPU */#ifdef CONFIG_IA64_GENERIC machvec_init(acpi_get_sysname());#endif if (efi.acpi20) { /* Parse the ACPI 2.0 tables */ acpi20_parse(efi.acpi20); } else if (efi.acpi) { /* Parse the ACPI tables */ acpi_parse(efi.acpi); }#ifdef CONFIG_VT# if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con;# elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con;# endif#endif#ifdef CONFIG_IA64_MCA /* enable IA-64 Machine Check Abort Handling */ ia64_mca_init();#endif platform_setup(cmdline_p); paging_init(); unw_create_gate_table();}/* * Display cpu info for all cpu's. */static intshow_cpuinfo (struct seq_file *m, void *v){#ifdef CONFIG_SMP# define lpj c->loops_per_jiffy#else# define lpj loops_per_jiffy#endif char family[32], features[128], *cp; struct cpuinfo_ia64 *c = v; unsigned long mask, cpu = c - cpu_data(0);#ifdef CONFIG_SMP if (!(cpu_online_map & (1 << cpu))) return 0;#endif mask = c->features; switch (c->family) { case 0x07: memcpy(family, "Itanium", 8); break; case 0x1f: memcpy(family, "McKinley", 9); break; default: sprintf(family, "%u", c->family); break; } /* build the feature string: */ memcpy(features, " standard", 10); cp = features; if (mask & 1) { strcpy(cp, " branchlong"); cp = strchr(cp, '\0'); mask &= ~1UL; } if (mask) sprintf(cp, " 0x%lx", mask); seq_printf(m, "processor : %lu\n" "vendor : %s\n" "arch : IA-64\n" "family : %s\n" "model : %u\n" "revision : %u\n" "archrev : %u\n" "features :%s\n" /* don't change this---it _is_ right! */ "cpu number : %lu\n" "cpu regs : %u\n" "cpu MHz : %lu.%06lu\n" "itc MHz : %lu.%06lu\n" "BogoMIPS : %lu.%02lu\n\n", cpu, c->vendor, family, c->model, c->revision, c->archrev, features, c->ppn, c->number, c->proc_freq / 1000000, c->proc_freq % 1000000, c->itc_freq / 1000000, c->itc_freq % 1000000, lpj*HZ/500000, (lpj*HZ/5000) % 100); return 0;}static void *c_start (struct seq_file *m, loff_t *pos){ return *pos < NR_CPUS ? cpu_data(*pos) : NULL;}static void *c_next (struct seq_file *m, void *v, loff_t *pos){ ++*pos; return c_start(m, pos);}static voidc_stop (struct seq_file *m, void *v){}struct seq_operations cpuinfo_op = { start: c_start, next: c_next, stop: c_stop, show: show_cpuinfo};voididentify_cpu (struct cpuinfo_ia64 *c){ union { unsigned long bits[5]; struct { /* id 0 & 1: */ char vendor[16]; /* id 2 */ u64 ppn; /* processor serial number */ /* id 3: */ unsigned number : 8; unsigned revision : 8; unsigned model : 8; unsigned family : 8; unsigned archrev : 8; unsigned reserved : 24; /* id 4: */ u64 features; } field; } cpuid; pal_vm_info_1_u_t vm1; pal_vm_info_2_u_t vm2; pal_status_t status; unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ int i; for (i = 0; i < 5; ++i) cpuid.bits[i] = ia64_get_cpuid(i); memcpy(c->vendor, cpuid.field.vendor, 16); c->ppn = cpuid.field.ppn; c->number = cpuid.field.number; c->revision = cpuid.field.revision; c->model = cpuid.field.model; c->family = cpuid.field.family; c->archrev = cpuid.field.archrev; c->features = cpuid.field.features; status = ia64_pal_vm_summary(&vm1, &vm2); if (status == PAL_STATUS_SUCCESS) { impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; } printk("CPU %d: %lu virtual and %lu physical address bits\n", smp_processor_id(), impl_va_msb + 1, phys_addr_size); c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));}/* * cpu_init() initializes state that is per-CPU. This function acts * as a 'CPU state barrier', nothing should get across. */voidcpu_init (void){ extern void __init ia64_mmu_init (void *); unsigned long num_phys_stacked; pal_vm_info_2_u_t vmi; unsigned int max_ctx; struct cpuinfo_ia64 *my_cpu_data;#ifdef CONFIG_NUMA int cpu, order; /* * If NUMA is configured, the cpu_data array is not preallocated. The boot cpu * allocates entries for every possible cpu. As the remaining cpus come online, * they reallocate a new cpu_data structure on their local node. This extra work * is required because some boot code references all cpu_data structures * before the cpus are actually started. */ if (!boot_cpu_data) { my_cpu_data = alloc_bootmem_pages_node(NODE_DATA(numa_node_id()), sizeof(struct cpuinfo_ia64)); boot_cpu_data = my_cpu_data; my_cpu_data->cpu_data[0] = my_cpu_data; for (cpu = 1; cpu < NR_CPUS; ++cpu) my_cpu_data->cpu_data[cpu] = alloc_bootmem_pages_node(NODE_DATA(numa_node_id()), sizeof(struct cpuinfo_ia64)); for (cpu = 1; cpu < NR_CPUS; ++cpu) memcpy(my_cpu_data->cpu_data[cpu]->cpu_data_ptrs, my_cpu_data->cpu_data, sizeof(my_cpu_data->cpu_data)); } else { order = get_order(sizeof(struct cpuinfo_ia64)); my_cpu_data = page_address(alloc_pages_node(numa_node_id(), GFP_KERNEL, order)); memcpy(my_cpu_data, boot_cpu_data->cpu_data[smp_processor_id()], sizeof(struct cpuinfo_ia64)); __free_pages(virt_to_page(boot_cpu_data->cpu_data[smp_processor_id()]), order); for (cpu = 0; cpu < NR_CPUS; ++cpu) boot_cpu_data->cpu_data[cpu]->cpu_data[smp_processor_id()] = my_cpu_data; }#else my_cpu_data = cpu_data(smp_processor_id());#endif /* * We can't pass "local_cpu_data" to identify_cpu() because we haven't called * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it * depends on the data returned by identify_cpu(). We break the dependency by * accessing cpu_data() the old way, through identity mapped space. */ identify_cpu(my_cpu_data); /* Clear the stack memory reserved for pt_regs: */ memset(ia64_task_regs(current), 0, sizeof(struct pt_regs)); /* * Initialize default control register to defer all speculative faults. The * kernel MUST NOT depend on a particular setting of these bits (in other words, * the kernel must have recovery code for all speculative accesses). Turn on * dcr.lc as per recommendation by the architecture team. Most IA-32 apps * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll * be fine). */ ia64_set_dcr( IA64_DCR_DM | IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC);#ifndef CONFIG_SMP ia64_set_fpu_owner(0);#endif atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; ia64_mmu_init(my_cpu_data);#ifdef CONFIG_IA32_SUPPORT /* initialize global ia32 state - CR0 and CR4 */ asm volatile ("mov ar.cflg = %0" :: "r" (((ulong) IA32_CR4 << 32) | IA32_CR0));#endif /* disable all local interrupt sources: */ ia64_set_itv(1 << 16); ia64_set_lrr0(1 << 16); ia64_set_lrr1(1 << 16); ia64_set_pmv(1 << 16); ia64_set_cmcv(1 << 16); /* clear TPR & XTP to enable all interrupt classes: */ ia64_set_tpr(0);#ifdef CONFIG_SMP normal_xtp();#endif /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ if (ia64_pal_vm_summary(NULL, &vmi) == 0) max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; else { printk("cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); max_ctx = (1U << 15) - 1; /* use architected minimum */ } while (max_ctx < ia64_ctx.max_ctx) { unsigned int old = ia64_ctx.max_ctx; if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) break; } if (ia64_pal_rse_info(&num_phys_stacked, 0) != 0) { printk ("cpu_init: PAL RSE info failed, assuming 96 physical stacked regs\n"); num_phys_stacked = 96; } local_cpu_data->phys_stacked_size_p8 = num_phys_stacked*8 + 8;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -