📄 ols.m
字号:
function [beta,se,resid,r2,rb2]=ols(X,y);
%OLS Ordinary least-square estimation
% [beta,se,resid,r2] calculates the ordinary least squares
% estimates, beta, for the equation(s):
%
% y=X*beta+u, E[u]=0, E[u*u']=sigma^2 * I
%
% where y is a Txn matrix of T observations on the n dependent
% variables, X is a Txk matrix of T observations on k independent
% variables, and u is a Txn matrix of residuals. If requested,
% OLS also returns the standard errors of beta, se, the estimated
% residuals, u, the R^2 statistic, and the Rbar^2 statistic.
%
% Ellen R. McGrattan, 10-13-87
% Revised, 11-23-88, ERM
%
beta=(X'*X)\(X'*y);
if nargout>1;
resid=y-X*beta;
[T,k]=size(X);
df=T-k;
se=sqrt(diag(inv(X'*X)/df))*sqrt(diag(resid'*resid))';
end;
if nargout>3;
p=X*((X'*X)\X');
l=eye(T)-ones(T)/T;
r2=((diag(y'*X*beta)-(sum(y)').^2/T).^2)./(diag(y'*l*y).*diag(y'*p*l*p*y));
rb2=(T*r2-k)/df;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -