📄 cm_mod2_out.m
字号:
function [error, yhat] = cm_mod2(beta);
global squasher data1 minx miny maxx maxy malags neuronxarg_ygap cthres_ygap neuronxarg_inf cthres_inf neuronxarg_yvol cthres_yvol ;
y = data1(:,1);
x = data1(:,2:end-1);
[nx, cx] = size(x);
if squasher == 1,
yy = (y - miny)/(maxy-miny);
for i = 1:cx, xx(:,i) = (x(:,i)-minx(i))/(maxx(i)-minx(i));
end
else yy = y; xx = x;
end
if squasher == 1,
cxarg_ygap = (cthres_ygap-minx(neuronxarg_ygap)) / (maxx(neuronxarg_ygap)-minx(neuronxarg_ygap));
else cxarg_ygap = cthres_ygap;
end
ny = length(yy);
yhat1 = yy;
% xx1 = xx * abs(beta(1:cx))' + ones(ny,1) * abs(beta(cx+1));
xx1 = xx * (beta(1:cx))' + ones(ny,1) * abs(beta(cx+1));
ehat(1:malags,1) = zeros(malags,1);
neuron1(1:malags,1) = zeros(malags,1);
for i = malags+1:ny,
% neuronx = abs(beta(cx+2))* (xx(i-1,neuronxarg_ygap)-cxarg_ygap);
neuronx = abs(beta(cx+2))* (xx(i-1,neuronxarg_ygap)-cxarg_ygap);
neuron1(i,:) = 2 ./ (1 + exp(-2 * neuronx)) -1;
EXX = ehat(i-malags:i-1,:);
% yhat1(i,:) = xx1(i,:) + neuron1(i,:) * abs(beta(neuronxarg_ygap)) * xx(i,neuronxarg_ygap) + beta(cx + 3:cx+malags+2) * EXX;;
yhat1(i,:) = xx1(i,:) + neuron1(i,:) * (beta(neuronxarg_ygap)) * xx(i,neuronxarg_ygap) + beta(cx + 3:cx+malags+2) * EXX;;
ehat(i,:) = yy(i,:) - yhat1(i,:);
end;
error = 0
if squasher == 1,
yhat = yhat1 * (maxy-miny) + miny;
else yhat = yhat1;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -