📄 ffnet9_elman.m
字号:
function [ssebest,rsqbest,rmsqbest,hqifbest,pderbest,tstatn,yyyhat, yyyout,W1,W3, W4, W5, ...
nrow1,yxmat, b1, b3,b4, foutput,exitflag, nparm] = ...
ffnet9_jump(assetx,target,percent,nlag,delay,info,gendum,maxgen, maxgen1, helge,derdum,delta);
% Ouputs:
% output:
% sse, rsq, rmsq, hqif, pderiv ,tstatn, yyyhat, yyyout, W1, W3,
% W4, W5,
% nrow1,
% yxmat b1, b3, b4, foutput, exitflag, nparm
% Inputs:
% Input matrix,
% column of dep variable,
% percent of data for in sample,
% number of lags
% delay factor (forecasting more than one period ahead
% info: no of hidden layers, neurons in 1 , 2, 3, (3 max)
% gendum:
% genetic algorithm with gd (=1),ga off, gd on (=0); just ga, gd off (=2)
% maxgen: number of generations for ga
% nepoch: number of epochs or iterations for function optimizer
% dummy for squasher, 1 for helge, 2 for DeLeo, 3 for matlab linear, 0 for none
% dummy for partial derivative, 0 for mean, 1 for endpoint
% delta: difference for evaluating partial derivatives
global nlayer nneuron1 nneuron2 nneuron3;
fun = 'ffnet9fun_elman';
warning off;
nntwarn off;
if nargin == 8,
helge = 3; maxgen1 = 5000; derdum = 1; delta = .000001;
end
nlayer = info(1);
nneuron1 = info(2);
nneuron2 = info(3);
nneuron3 = info(4);
popsize = 50; pc = .9; pdes = 0; toler = .001; elite = 1;
[rr cc] = size(assetx);
% nlag = 1; % number of lags and arguments.
yrhat = [assetx];
if nlag == 0,
y = assetx(1+delay:end,target);
x = assetx(:,target(end)+1:end,:);
x = x(1:end-delay,:);
else [y x] = mylagvv(assetx, nlag, target, delay);
end;
yxmat = [y x];
[nrow ncol] = size(x);
[nrowy ncoly] = size(y);
nrow1 = round(percent * nrow);
nrow11 = nrow1 + 1; [nrow12 nrow13] = size(x(1:nrow1,:));
yy = y(1:nrow1,:); xx = [ x(1:nrow1,:)];
[nrow ncol] = size(x);
nrow1 = round(percent * nrow);
nrow11 = nrow1 + 1; [nrow12 nrow13] = size(x(1:nrow1,:));
yy = y(1:nrow1,:); xx = x(1:nrow1,:);
smin = .1;
smax = .9;
[rx, cx] = size(x);
[ry, cy] = size(y);
maxy = max(y);
miny = min(y);
maxx = max(x);
minx = min(x);
meany = mean(y);
sigy = std(y);
yz = detrend(y,0) ./ kron(ones(rx,1), sigy);
meanx = mean(x);
sigx = std(x);
xz = detrend(x,0) ./ kron(ones(rx,1),sigx);;
for i = 1:cy,
ys(:,i) = hsquasher(y(:,i), smax, smin);
yss(:,i) = 1 ./ (1+ exp(-(yz(:,i))));
end
for i = 1:cx,
xs(:,i) = hsquasher(x(:,i), smax, smin);
xss(:,i) = 1 ./(1+ exp(-(xz(:,i))));
end
if helge == 0, PN = x; TN = y;
elseif helge == 1, PN = xs; TN = ys;
elseif helge == 2, PN = xss; TN = yss;
else PP = x; TT = y;
[rp, cp] = size(PP);
for i = 1:cp, PN(:,i) = (PP(:,i)- minx(i)) ./ (maxx(i)-minx(i));
end
for i = 1:cy,
TN(:,i) = (TT(:,i)-miny(i))/(maxy(i)-miny(i));
end
end
global P T;
P = PN(1:nrow1,:);
T = TN(1:nrow1,:);
[rp,cp] = size(P);
[rt, ct] = size(T);
Praw = xx;
Traw = yy;
Praw1 = [Praw ones(length(Praw),1)];
betaols = inv(Praw1' * Praw1) * Praw1' * Traw;
A1 = Praw1 * betaols;
err1 = Traw - A1;
sse1 = err1' * err1;
Als = A1;
yhatls = Als;
[yyr yyc] = size(yhatls);
err1 = yy - yhatls;
ssrsq1 = ones(1,yyc) - var(err1) ./ var(yy);
hqols = nrow1 * log(sse1) + (ncol+1) * log(log(nrow1));
[rp,cp] = size(P);
nparm = nneuron1*cp + nneuron1 + nneuron1 * ncoly + ncoly + nneuron1 *nneuron1;
nepoch = maxgen1; scale = 1; beta0 = randn(1,nparm);
tp = [25, nepoch, .02, .01, 1.07, .7, .9, 1.04];
pm = .33; elite = 1; pdes = 0;
if gendum >= 1, beta = ...
gen7f(fun,beta0,popsize,maxgen);
else beta = .01 * ones(1, nparm);
end
[criterion,sse3,g,A3,W3,b3,W4,b4, W5] = feval(fun,beta);
if gendum <= 1,
options = optimset('MaxFunEvals', nepoch, 'MaxIter', nepoch,...
'TolFun', delta);
[beta,foutput,exitflag] = fminunc(fun, beta, options);
tstatn = tstatapp(fun, beta, delta);
[criterion,sse3,g,A3, W3,b3,W4,b4, W5] = feval(fun,beta);
else W3=W3; b3 = b3; W4 = W4; b4 = b4; W5 = W5, b5 = b5, W6 = W6, b6 = b6; W7 = W7; b7 = b7;
end
if helge == 0, A3n = A3;
elseif helge == 1, A3 = A3;
for i = 1:cy,
A3x(:,i) = helgeyx(A3(:,i), maxy(i), miny(i),smax,smin);
end
A3 = A3;
A3n = A3x;
elseif helge == 2, A3 = A3;
A3x = -log(1./A3- ones(size(A3)));
A3x = real(A3x); [junkr, junkc] = size(A3x);
A3x = kron(ones(junkr,1),meany) + A3x .* kron(ones(junkr,1),sigy);
A3 = A3;
A3n = A3x; A3n = real(A3n);
else
for i = 1:cy,
A3n(:,i) = A3(:,i) * (maxy(:,i)-miny(:,i)) + miny(:,i);
end
end
yhatnet = A3n;
ydep = yy;
err3 = ydep - yhatnet;
sse3 = sum(err3 .^2);
hqnet = nrow1 .* log(sse3) + (nparm) * log(log(nrow1));
% ssrsq3 = var(yhatnet) ./ var(ydep);
ssrsq3 = ones(1,yyc) - var(err3) ./ var(yy);
sse = [sse1; sse3];
hqif = [hqols; hqnet];
ssrsq = [ssrsq1; ssrsq3];
xxmean = mean(xx);
xxend = xx(end,:);
if derdum == 0,
xstar = [xxmean; xxmean];
else xstar = [xxend; xxend];
end
if helge == 0, pstar = xstar;
elseif helge == 1,
for i = 1:cx,
pstar(:,i) = hsquasher(xstar(:,i), smax, smin, maxx(1,i), minx(1,i));
end
elseif helge == 2, pstar = (1 ./ 1+ exp(-((xstar - meanx)))./ sigx);
pstar = real(pstar);
else
for i=1:cp,
pstar(:,i) = (xstar(:,i) - minx(i)) ./ (maxx(i) - minx(i));
end
end
pstar = pstar;
hdelta = delta;
[rp, cp] = size(P);
hdeltav = eye(cp) * hdelta;
A3star1 = pstar * W3+ b3;
A3star = A3star1(2,:) + A3star1(1,:) * W5;
A3star = 1./(1+exp(-A3star));
A3star = A3star * W4 + b4;
A3star = A3star;
if helge == 0, A3star = A3star;
elseif helge == 1,
A3star = A3star;
for ii = 1:cy,
A3star(:,ii) = helgeyx(A3star(:,ii),maxy(1,ii), miny(1,ii),smax, smin);
end
A3star = A3star;
elseif helge == 2,
A3star = A3star;
A3star = -log(1./A3star - ones(size(A3star)));
A3star = meany + A3star .* sigy;
A3star = A3star;
else
for i = 1:cy,
A3star(1,i) = A3star(:,i) .* (maxy(i)-miny(i)) + miny(i);
end
end
for i = 1:cp,
xdel = xstar + [hdeltav(i,:); hdeltav(i,:)];
if helge == 0,
pstardel = xdel;
elseif helge == 1,
for j = 1:cx,
pstardel(:,j) = hsquasher(xdel(:,j), smax, smin, maxx(1,j), minx(1,j));
end
elseif helge == 2,
pstardel = logsig((xdel - meanx) ./ sigx); pstardel = real(pstardel);
else
for jj = 1:cx,
pstardel(:,jj) = (xdel(:,jj) - minx(:,jj)) ./ (maxx(jj) - minx(jj));
end
end
A3d1= pstardel * W3+ b3;
A3d = A3d1(2,:) + A3d1(1,:) * W5;
A3d = 1./(1+exp(-A3d));
A3d = A3d * W4 + b4;
A3d = A3d;
if helge == 0, A3d = A3d;
elseif helge == 1,
A3d = A3d;
for kk = 1:cy,
A3d(:,kk) = helgeyx(A3d(:,kk), maxy(kk), miny(kk),smax,smin);
end
A3d = A3d;
A3d = real(A3d);
elseif helge == 2,
A3d = A3d;
A3d = -log(1./A3d - ones(size(A3d)));
A3d = meany + A3d .* sigy;
A3d = real(A3d);
else
for j=1:cy,
A3d(:,j) = A3d(:,j) .* (maxy(j)-miny(j)) + miny(j);
end;
end
pdernum(i,:) = (A3d(1,:)-A3star(1,:)) ./ hdelta;
clear A3d xdel;
end
xout = [x(nrow11:nrow,:)];
yout = y(nrow11:nrow,:);
[n1 c1] = size(yout);
Poutraw = xout;
Poutraw1 = [Poutraw ones(n1,1)];
Toutraw = yout;
T1 = TN(nrow1:end,:);
P1 = PN(nrow1:end,:);
A11 = Poutraw1 * betaols;
yhatls1 = A11;
err11 = yout - yhatls1;
err11sq = err11 .^2;
rmsqe1 = sqrt(mean(err11sq));
[rp1, cp1] = size(P1);
A311 = P1 * W3 + kron(ones(rp1,1),b3);
A31 = A311(2:end,:) + A311(1:end-1,:) * W5;
A31 = 1./(1+exp(-A31));
A31 = A31 * W4 + b4;
A31 = [T1(1,:); A31];
if helge == 0, yhatnet1 = A31;
elseif helge == 1, A31z = A31;
for i = 1:cy,
A31x(:,i) = helgeyx(A31z(:,i),maxy(i), miny(i), smax, smin);
end
A31net = A31x;
yhatnet1 = A31net;
elseif helge == 2,
A31z = A31;
A31x = -log(1./A31z - ones(size(A31z)));
A31x = real(A31x);
A31x = kron(ones(n1,1),meany) + A31x .* kron(ones(n1,1), sigy);
A31net = A31x;
yhatnet1 = A31net;
else
for i = 1:cy,
A31net(:,i) = A31(:,i) .* (maxy(i)-miny(i)) + miny(i);
end
yhatnet1 = A31net;
end
yout = yout(1:end,:);
yhatnet1 = yhatnet1(2:end,:);
err31 = yout-yhatnet1;
err31sq = err31 .^2;
rmsqe3 = (mean(err31sq)) .^.5;
rmsqe = [rmsqe1; rmsqe3];
% hintonwb(W3,b3); pause
% subplot(211); barerr(err1); grid; subplot(212); barerr(err3); grid; pause
% subplot(211); barerr(err11); grid; subplot(212); barerr(err31); grid;
hqnet = hqif(ncoly+1:end,:);
pdernetc = pdernum;
w1net = W3;
w2net = W4;
w3net = W5;
ssebest = sse;
rsqbest = [ssrsq];
rmsqbest = real([rmsqe]);
hqifbest = [hqif];
W1 = betaols(1:end-1,:);
pderbest = [W1 pdernetc];
yyy = [yy yhatls yhatnet; yout yhatls1 yhatnet1]; yyy = real(yyy);
yyyhat = yyy(1:nrow1,:);
yyyout = yyy(nrow1+1:end,:);
yout = yyyout;
ndim = ncoly;
for i = 1:ndim,
erroroutls(:,i) = yout(:,ndim+i) - yout(:,i);
erroroutnet(:,i) = yout(:,2*ndim+i) - yout(:,i);
rrmsq(1,i) = sqrt(mean(erroroutls(:,i) .^2));
rrmsq(2,i) = sqrt(mean(erroroutnet(:,i) .^2));
end
rmsqbest = rrmsq;
clear global P T nlayer nneuron1 nneuron2 nneuron3;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -