📄 ker.m
字号:
function [ys,f1,f2,f3,h]=ker(y);
% Purpose: Estimates a Univariate Density using Epanechnikov and
% Gaussian Kernels. Bandwidth is selected according to
% Silverman's Plug-in-Rule.
%
% Format: [ys,f1,f2,f3,h]=3er(y);
%
% Input: y T x 1 Variable to be analyzed
%
% Output: ys T x 1 SORTED values of y
% f1 T x 1 Empirical Density of SORTED values of y.
% f(x) is computed using the Epanechnikov Kernel.
% f2 T x 1 Empirical Density of SORTED values of y.
% f(x) is computed using the Gaussian Kernel.
% f3 T x 1 Gaussian Density of SORTED values of y with the
% same Mean and Variance.
% h Scalar Optimal Bandwidth.
%
% Suggestion: plot(ys,[f1 f2 f3]) to see the results.
%
% References: Gallant, A.R. (1994). Class Notes. UNC.
% Silverman, B. (1986). Density Estimation. Chapman & Hall.
% Ullah, A. (1988). "Non-parametric Estimation of Econometric
% Functionals". Canadian Journal of Economics.
% R=F3mulo A. Chumacero
% Last update: 9/13/95
T=length(y);
m=mean(y);
s=std(y);
qr=(max(y)-min(y))/4;
h=0.9*(T^(-1/5))*min([s (qr/1.34)]);
ys=sort(y);
f3=pdf('norm',ys,m,s);
f1=zeros(T,1);
f2=zeros(T,1);
i=1;
while i<T+1;
au=abs(ys(i,1)-ys)/h;
e1=au < sqrt(5);
f1=e1.*(0.75*(1-(0.2*au.*au))/((5^0.5)*h*T))+f1;
f2=((1/(h*T))*(1/((2*pi)^0.5))*exp(-0.5*au.*au))+f2;
i=i+1;
end;
f1 = f1 ./ sum(f1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -