⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 noisecg.tex

📁 STFT相关函数
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{noisecg}\hspace*{-1.6cm}{\Large \bf noisecg}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Analytic complex gaussian noise (white or colored).\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}noise = noisecg(N)noise = noisecg(N,a1)noise = noisecg(N,a1,a2)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty noisecg} computes an analytic complex gaussian        noise of length {\ty N} with mean 0 and variance 1.0. \\\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c} Name &Description & Default value\\ \hline {\ty N} & length of the outputvector\\ {\ty a1} & first coefficient of the auto-regressive filter used tocolor the noise & {\ty 0} \\ {\ty a2} & second coefficient of theauto-regressive filter used to color the noise & {\ty 0} \\ \hline {\tynoise} & output vector containing the noise samples\\ \hline\end{tabular*}\vspace*{.2cm}{\ty noise=noisecg(N)} yields a complex white gaussian noise.\\ {\ty noise=noisecg(N,a1)} yields a complex colored gaussian noise obtainedby filtering a white gaussian noise through a first order filter whoseimpulse response is \[H(z)\ =\ \frac{\sqrt{1-a_1^2}}{1-a_1\ z^{-1}}.\] {\ty noise=noisecg(N,a1,a2)} yields a complex colored gaussian noiseobtained by filtering a white gaussian noise through a second order filter whoseimpulse response is \[H(z)\ =\ \frac{\sqrt{1-a_1^2-a_2^2}}{1-a_1\ z^{-1}-a_2\ z^{-2}}.\] \end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim}         N=500; noise=noisecg(N);         [abs(mean(noise)),std(noise).^2]         ans =                0.0152    0.9680         subplot(211); plot(real(noise)); axis([1 N -3 3]);         subplot(212); f=linspace(-0.5,0.5,N);          plot(f,abs(fftshift(fft(noise))).^2);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}rand, randn, noisecu.\end{verbatim}\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -