⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfrcw.tex

📁 STFT相关函数
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrcw}\hspace*{-1.6cm}{\Large \bf tfrcw}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Choi-Williams time-frequency distribution.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f] = tfrcw(x)[tfr,t,f] = tfrcw(x,t)[tfr,t,f] = tfrcw(x,t,N)[tfr,t,f] = tfrcw(x,t,N,g)[tfr,t,f] = tfrcw(x,t,N,g,h)[tfr,t,f] = tfrcw(x,t,N,g,h,sigma)[tfr,t,f] = tfrcw(x,t,N,g,h,sigma,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty tfrcw} computes the Choi-Williams distribution of a        discrete-time signal {\ty x}, or the cross Choi-Williams        representation between two signals. This distribution has the        following expression :\[CW_x(t,\nu)=2\iint_{-\infty}^{+\infty} \dfrac{\sqrt{\sigma}}{4\sqrt{\pi}|\tau|}\e^{-v^2\sigma/(16\tau^2)}\ x(t+v+\frac{\tau}{2})\x^*(t+v-\frac{\tau}{2})\ e^{-j2\pi \nu \tau}\ dv\ d\tau.\]\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}Name & Description & Default value\\\hline        {\ty x}     & signal if auto-CW, or {\ty [x1,x2]} if cross-CW {\ty			(Nx=length(x))}\\        {\ty t}     & time instant(s)          & {\ty (1:Nx)}\\        {\ty N}     & number of frequency bins & {\ty Nx}\\        {\ty g}     & time smoothing window, {\ty G(0)} being forced to {\ty 1}, where {\ty G(f)} is the Fourier transform of {\ty g(t)}              &                           {\ty window(odd(N/10))}\\        {\ty h}     & frequency smoothing window, {\ty h(0)} being forced to {\ty 1}              &                           {\ty window(odd(N/4))}\\         {\ty sigma} & kernel width             & {\ty 1}\\        {\ty trace} & if nonzero, the progression of the algorithm is shown              &                           {\ty 0}\\     \hline {\ty tfr}   & time-frequency representation\\        {\ty f}     & vector of normalized frequencies\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrcw} runs {\ty tfrqview}.\end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim}         sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);           g=window(9,'Kaiser'); h=window(27,'Kaiser');          t=1:128; tfrcw(sig,t,128,g,h,3.6,1);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] H. Choi, W. Williams ``Improved Time-Frequency Representation ofMulticomponent Signals Using Exponential Kernels'', IEEE Trans. onAcoustics, Speech and Signal Processing, Vol. 37, No. 6, June 1989.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -