📄 doppler.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{doppler}
\hspace*{-1.6cm}{\Large \bf doppler}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Complex Doppler signal.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[fm,am,iflaw] = doppler(N,fs,f0,d,v)
[fm,am,iflaw] = doppler(N,fs,f0,d,v,t0)
[fm,am,iflaw] = doppler(N,fs,f0,d,v,t0,c)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty doppler} returns the frequency modulation ({\ty fm}), the
amplitude modulation ({\ty am}) and the instantaneous frequency
law ({\ty iflaw}) of the signal received by a fixed observer from
a moving target emitting a pure frequency {\ty f0}.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty N} & number of points\\
{\ty fs} & sampling frequency (in Hz)\\
{\ty f0} & target frequency (in Hz)\\
{\ty d} & distance from the line to the observer (in meters)\\
{\ty v} & target velocity (in m/s)\\
{\ty t0} & time center & {\ty N/2}\\
{\ty c} & wave velocity (in m/s) & {\ty 340}\\
\hline {\ty fm} & output frequency modulation\\
{\ty am} & output amplitude modulation\\
{\ty iflaw} & output instantaneous frequency law\\
\hline
\end{tabular*}
\vspace*{.2cm}
The doppler effect characterizes the fact that a signal returned from a
moving target is scaled and delayed compared to the transmitted signal. For
narrow-band signals, this scaling effect can be considered as a frequency
shift. \\
{\ty [fm,am,iflaw] = doppler(N,fs,f0,d,v,t0,c)} returns the signal received
by a fixed observer from a moving target emitting a pure frequency {\ty
f0}. The target is moving along a straight line, which gets closer to the
observer up to a distance {\ty d}, and then moves away. {\ty t0} is the
time center (i.e. the time at which the target is at the closest distance
from the observer), and {\ty c} is the wave velocity in the medium.
\end{minipage}
\newpage
{\bf \large \fontfamily{cmss}\selectfont Example}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Plot the signal and its instantaneous frequency law received by an observer
from a car moving at the speed $v=50 m/s$, passing at 10 meters from the
observer (the radar). The rotating frequency of the engine is $f_0=65 Hz$,
and the sampling frequency is $f_s=200 Hz$ :
\begin{verbatim}
N=512; [fm,am,iflaw]=doppler(N,200,65,10,50);
subplot(211); plot(real(am.*fm));
subplot(212); plot(iflaw);
[ifhat,t]=instfreq(sigmerge(am.*fm,noisecg(N),15),11:502,10);
hold on; plot(t,ifhat,'g'); hold off;
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
dopnoise.
\end{verbatim}
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -