⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfrridbn.tex

📁 STFT相关函数
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrridbn}\hspace*{-1.6cm}{\Large \bf tfrridbn}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Reduced Interference Distribution with a binomial kernel.\end{minipage}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f] = tfrridbn(x)[tfr,t,f] = tfrridbn(x,t)[tfr,t,f] = tfrridbn(x,t,N)[tfr,t,f] = tfrridbn(x,t,N,g)[tfr,t,f] = tfrridbn(x,t,N,g,h)[tfr,t,f] = tfrridbn(x,t,N,g,h,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        Reduced Interference Distribution with a kernel based on the        binomial coefficients.  {\ty tfrridbn} computes either the        distribution of a discrete-time signal {\ty x}, or the cross        representation between two signals. This distribution has the        following discrete-time continuous-frequency expression :\[RIDBN_x(t,\nu)=\sum_{\tau=-\infty}^{+\infty} \sum_{v=-|\tau|}^{+|\tau|} {1\over 2^{2|\tau|+1}}\ { 2|\tau|+1\choose |\tau|+v+1}\ x[t+v+\tau]\ x^*[t+v-\tau]\ e^{-\jmath 4\pi\nu\tau}.\]\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}Name & Description & Default value\\\hline        {\ty x}     & signal if auto-RIDBN, or {\ty [x1,x2]} if cross-RIDBN ({\ty			Nx=length(x)})\\        {\ty t}     & time instant(s)          & {\ty (1:Nx)}\\        {\ty N}     & number of frequency bins & {\ty Nx}\\         {\ty g}     & time smoothing window, {\ty G(0)} being forced to {\ty 1}, where {\ty G(f)} is the Fourier transform of {\ty g(t)}                                         & {\ty window(odd(N/10))}\\         {\ty h}     & frequency smoothing window, {\ty h(0)} being forced to {\ty 1}                                         & {\ty window(odd(N/4))}\\         {\ty trace} & if nonzero, the progression of the algorithm is shown                                         & {\ty 0}\\     \hline {\ty tfr}   & time-frequency representation. \\        {\ty f}     & vector of normalized frequencies\\ \hline\end{tabular*}\vspace*{.1cm}When called without output arguments, {\ty tfrridbn} runs {\ty tfrqview}.\end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim}         sig=[fmlin(128,.05,.3)+fmlin(128,.15,.4)];          tfrridbn(sig); \end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] W. Williams, J. Jeong ``Reduced Interference Time-FrequencyDistributions'' in {\it Time-Frequency Analysis - Methods andApplications} Edited by B. Boashash, Longman-Cheshire, Melbourne, 1992.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -