⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 postaggerme.java

📁 自然语言处理领域的一个开发包
💻 JAVA
字号:
///////////////////////////////////////////////////////////////////////////////// Copyright (C) 2002 Jason Baldridge and Gann Bierner// // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.// // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Lesser General Public License for more details.// // You should have received a copy of the GNU Lesser General Public// License along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.//////////////////////////////////////////////////////////////////////////////package opennlp.tools.postag;import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.IOException;import java.io.InputStreamReader;import java.io.Reader;import java.util.ArrayList;import java.util.Arrays;import java.util.Iterator;import java.util.List;import java.util.StringTokenizer;import opennlp.maxent.DataStream;import opennlp.maxent.Evalable;import opennlp.maxent.EventCollector;import opennlp.maxent.EventStream;import opennlp.maxent.GISModel;import opennlp.maxent.MaxentModel;import opennlp.maxent.PlainTextByLineDataStream;import opennlp.maxent.TwoPassDataIndexer;import opennlp.maxent.io.SuffixSensitiveGISModelWriter;import opennlp.tools.ngram.Dictionary;import opennlp.tools.ngram.MutableDictionary;import opennlp.tools.util.BeamSearch;import opennlp.tools.util.Pair;import opennlp.tools.util.Sequence;/** * A part-of-speech tagger that uses maximum entropy.  Trys to predict whether * words are nouns, verbs, or any of 70 other POS tags depending on their * surrounding context. * * @author      Gann Bierner * @version $Revision: 1.16 $, $Date: 2005/11/14 19:50:43 $ */public class POSTaggerME implements Evalable, POSTagger {  /**   * The maximum entropy model to use to evaluate contexts.   */  protected MaxentModel _posModel;  /**   * The feature context generator.   */  protected POSContextGenerator _contextGen;  /**   * Tag dictionary used for restricting words to a fixed set of tags.   */  protected TagDictionary tagDictionary;    protected Dictionary ngramDictionary;  /**   * Says whether a filter should be used to check whether a tag assignment   * is to a word outside of a closed class.   */  protected boolean _useClosedClassTagsFilter = false;    private static final int DEFAULT_BEAM_SIZE =3;  /** The size of the beam to be used in determining the best sequence of pos tags.*/  protected int size;  private Sequence bestSequence;    /** The search object used for search multiple sequences of tags. */  protected  BeamSearch beam;  public POSTaggerME(MaxentModel mod, Dictionary dict) {    this(mod, new DefaultPOSContextGenerator(dict));  }    public POSTaggerME(MaxentModel mod,Dictionary dict,TagDictionary tagdict) {      this(DEFAULT_BEAM_SIZE,mod, new DefaultPOSContextGenerator(dict),tagdict);    }    public POSTaggerME(MaxentModel mod, POSContextGenerator cg) {    this(DEFAULT_BEAM_SIZE,mod,cg,null);  }    public POSTaggerME(MaxentModel mod, POSContextGenerator cg, TagDictionary dict) {      this(DEFAULT_BEAM_SIZE,mod,cg,dict);    }  public POSTaggerME(int beamSize, MaxentModel mod, POSContextGenerator cg, TagDictionary tagdict) {    size = beamSize;    _posModel = mod;    _contextGen = cg;    beam = new PosBeamSearch(size, cg, mod);    tagDictionary = tagdict;  }  public String getNegativeOutcome() {    return "";  }    /**   * Returns the number of different tags predicted by this model.   * @return the number of different tags predicted by this model.   */  public int getNumTags() {    return _posModel.getNumOutcomes();  }  public EventCollector getEventCollector(Reader r) {    return new POSEventCollector(r, _contextGen);  }  public List tag(List sentence) {    bestSequence = beam.bestSequence(sentence,null);    return bestSequence.getOutcomes();  }  public String[] tag(String[] sentence) {    List t = tag(Arrays.asList(sentence));    return ((String[]) t.toArray(new String[t.size()]));  }  public void probs(double[] probs) {    bestSequence.getProbs(probs);  }  public double[] probs() {    return bestSequence.getProbs();  }  public String tag(String sentence) {    ArrayList toks = new ArrayList();    StringTokenizer st = new StringTokenizer(sentence);    while (st.hasMoreTokens())      toks.add(st.nextToken());    List tags = tag(toks);    StringBuffer sb = new StringBuffer();    for (int i = 0; i < tags.size(); i++)      sb.append(toks.get(i) + "/" + tags.get(i) + " ");    return sb.toString().trim();  }  public void localEval(MaxentModel posModel, Reader r, Evalable e, boolean verbose) {    _posModel = posModel;    float total = 0, correct = 0, sentences = 0, sentsCorrect = 0;    BufferedReader br = new BufferedReader(r);    String line;    try {      while ((line = br.readLine()) != null) {        sentences++;        Pair p = POSEventCollector.convertAnnotatedString(line);        List words = (List) p.a;        List outcomes = (List) p.b;        List tags = beam.bestSequence(words, null).getOutcomes();        int c = 0;        boolean sentOk = true;        for (Iterator t = tags.iterator(); t.hasNext(); c++) {          total++;          String tag = (String) t.next();          if (tag.equals(outcomes.get(c)))            correct++;          else            sentOk = false;        }        if (sentOk)          sentsCorrect++;      }    }    catch (IOException E) {      E.printStackTrace();    }    System.out.println("Accuracy         : " + correct / total);    System.out.println("Sentence Accuracy: " + sentsCorrect / sentences);  }  private class PosBeamSearch extends BeamSearch {    public PosBeamSearch(int size, POSContextGenerator cg, MaxentModel model) {      super(size, cg, model);    }        public PosBeamSearch(int size, POSContextGenerator cg, MaxentModel model, int cacheSize) {      super(size, cg, model, cacheSize);    }        protected boolean validSequence(int i, Object[] inputSequence, String[] outcomesSequence, String outcome) {      if (tagDictionary == null) {        return true;      }      else {        String[] tags = tagDictionary.getTags(inputSequence[i].toString());        if (tags == null) {          return true;        }        else {          return Arrays.asList(tags).contains(outcome);        }      }    }        protected boolean validSequence(int i, List inputSequence, Sequence outcomesSequence, String outcome) {      if (tagDictionary == null) {        return true;      }      else {        String[] tags = tagDictionary.getTags(inputSequence.get(i).toString());        if (tags == null) {          return true;        }        else {          return Arrays.asList(tags).contains(outcome);        }      }    }  }    public String[] getOrderedTags(List words, List tags, int index) {    return getOrderedTags(words,tags,index,null);  }    public String[] getOrderedTags(List words, List tags, int index,double[] tprobs) {    double[] probs = _posModel.eval(_contextGen.getContext(index,words.toArray(),(String[]) tags.toArray(new String[tags.size()]),null));    String[] orderedTags = new String[probs.length];    for (int i = 0; i < probs.length; i++) {      int max = 0;      for (int ti = 1; ti < probs.length; ti++) {        if (probs[ti] > probs[max]) {          max = ti;        }      }      orderedTags[i] = _posModel.getOutcome(max);      if (tprobs != null){        tprobs[i]=probs[max];      }      probs[max] = 0;    }    return (orderedTags);  }  public static GISModel train(EventStream es, int iterations, int cut) throws IOException {    return opennlp.maxent.GIS.trainModel(iterations, new TwoPassDataIndexer(es, cut));  }    private static void usage() {    System.err.println("Usage: POSTaggerME [-encoding encoding] [-dict dict_file] training model [cutoff] [iterations]");    System.err.println("This trains a new model on the specified training file and writes the trained model to the model file.");    System.err.println("-encoding Specifies the encoding of the training file");    System.err.println("-dict Specifies that a dictionary file should be created for use in distinguising between rare and non-rare words");    System.exit(1);  }  /**     * <p>Trains a new pos model.</p>     *     * <p>Usage: java opennlp.postag.POStaggerME [-encoding charset] [-d dict_file] data_file  new_model_name (iterations cutoff)?</p>     *     */  public static void main(String[] args) throws IOException {    if (args.length == 0){      usage();    }    int ai=0;    try {      String encoding = null;      String dict = null;      while (args[ai].startsWith("-")) {        if (args[ai].equals("-encoding")) {          ai++;          if (ai < args.length) {            encoding = args[ai++];          }          else {            usage();          }        }        else if (args[ai].equals("-dict")) {          ai++;          if (ai < args.length) {            dict = args[ai++];          }          else {            usage();          }        }        else {          System.err.println("Unknown option "+args[ai]);          usage();        }      }      File inFile = new File(args[ai++]);      File outFile = new File(args[ai++]);      int cutoff = 5;      int iterations = 100;      if (args.length > ai) {        cutoff = Integer.parseInt(args[ai++]);        iterations = Integer.parseInt(args[ai++]);      }      GISModel mod;      if (dict != null) {        System.err.println("Building dictionary");        MutableDictionary mdict = new MutableDictionary(cutoff);        DataStream data = new opennlp.maxent.PlainTextByLineDataStream(new java.io.FileReader(inFile));        while(data.hasNext()) {          String tagStr = (String) data.nextToken();          String[] tt = tagStr.split(" ");          String[] words = new String[tt.length];          for (int wi=0;wi<words.length;wi++) {            words[wi] = tt[wi].substring(0,tt[wi].lastIndexOf('_'));          }          mdict.add(words,1,true);        }        System.out.println("Saving the dictionary");        mdict.persist(new File(dict));      }      EventStream es;      if (encoding == null) {        if (dict == null) {          es = new POSEventStream(new PlainTextByLineDataStream(new InputStreamReader(new FileInputStream(inFile))));        }        else {          es = new POSEventStream(new PlainTextByLineDataStream(new InputStreamReader(new FileInputStream(inFile))), new Dictionary(dict));        }      }      else {        if (dict == null) {          es = new POSEventStream(new PlainTextByLineDataStream(new InputStreamReader(new FileInputStream(inFile),encoding)));        }        else {          es = new POSEventStream(new PlainTextByLineDataStream(new InputStreamReader(new FileInputStream(inFile),encoding)), new Dictionary(dict));        }      }      mod = train(es, iterations, cutoff);      System.out.println("Saving the model as: " + outFile);      new SuffixSensitiveGISModelWriter(mod, outFile).persist();    }    catch (Exception e) {      e.printStackTrace();    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -