📄 chunkerme.java
字号:
/////////////////////////////////////////////////////////////////////////////////Copyright (C) 2003 Thomas Morton// //This library is free software; you can redistribute it and/or//modify it under the terms of the GNU Lesser General Public//License as published by the Free Software Foundation; either//version 2.1 of the License, or (at your option) any later version.// //This library is distributed in the hope that it will be useful,//but WITHOUT ANY WARRANTY; without even the implied warranty of//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the//GNU Lesser General Public License for more details.// //You should have received a copy of the GNU Lesser General Public//License along with this program; if not, write to the Free Software//Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.//////////////////////////////////////////////////////////////////////////////package opennlp.tools.chunker;import java.util.Arrays;import java.util.List;import opennlp.maxent.GISModel;import opennlp.maxent.MaxentModel;import opennlp.maxent.TwoPassDataIndexer;import opennlp.tools.util.BeamSearch;import opennlp.tools.util.Sequence;/** * The class represents a maximum-entropy-based chunker. Such a chunker can be used to * find flat structures based on sequence inputs such as noun phrases or named entities. * */public class ChunkerME implements Chunker { /** The beam used to search for sequences of chunk tag assignments. */ protected BeamSearch beam; private Sequence bestSequence; /** The model used to assign chunk tags to a sequence of tokens. */ protected MaxentModel model; /** * Creates a chunker using the specified model. * @param mod The maximum entropy model for this chunker. */ public ChunkerME(MaxentModel mod) { this(mod, new DefaultChunkerContextGenerator(), 10); } /** * Creates a chunker using the specified model and context generator. * @param mod The maximum entropy model for this chunker. * @param cg The context generator to be used by the specified model. */ public ChunkerME(MaxentModel mod, ChunkerContextGenerator cg) { this(mod, cg, 10); } /** * Creates a chunker using the specified model and context generator and decodes the * model using a beam search of the specified size. * @param mod The maximum entropy model for this chunker. * @param cg The context generator to be used by the specified model. * @param beamSize The size of the beam that should be used when decoding sequences. */ public ChunkerME(MaxentModel mod, ChunkerContextGenerator cg, int beamSize) { beam = new ChunkBeamSearch(beamSize, cg, mod); this.model = mod; } /* inherieted javadoc */ public List chunk(List toks, List tags) { bestSequence = beam.bestSequence(toks, new Object[] { (String[]) tags.toArray(new String[tags.size()]) }); return bestSequence.getOutcomes(); } /* inherieted javadoc */ public String[] chunk(Object[] toks, String[] tags) { bestSequence = beam.bestSequence(Arrays.asList(toks), new Object[] {tags}); List c = bestSequence.getOutcomes(); return (String[]) c.toArray(new String[c.size()]); } /** * This method determines wheter the outcome is valid for the preceeding sequence. * This can be used to implement constraints on what sequences are valid. * @param outcome The outcome. * @param sequence The precceding sequence of outcome assignments. * @return true is the outcome is valid for the sequence, false otherwise. */ protected boolean validOutcome(String outcome, Sequence sequence) { return (true); } /** * This method determines wheter the outcome is valid for the preceeding sequence. * This can be used to implement constraints on what sequences are valid. * @param outcome The outcome. * @param sequence The precceding sequence of outcome assignments. * @return true is the outcome is valid for the sequence, false otherwise. */ protected boolean validOutcome(String outcome, String[] sequence) { return (true); } /** * This class implements the abstract BeamSearch class to allow for the chunker to use * the common beam search code. * */ class ChunkBeamSearch extends BeamSearch { public ChunkBeamSearch(int size, ChunkerContextGenerator cg, MaxentModel model) { super(size, cg, model); } /* inherieted java doc */ protected boolean validSequence(int i, List sequence, Sequence s, String outcome) { return validOutcome(outcome, s); } protected boolean validSequence(int i, Object[] sequence, String[] s, String outcome) { return validOutcome(outcome, s); } } /** * Populates the specified array with the probabilities of the last decoded sequence. The * sequence was determined based on the previous call to <code>chunk</code>. The * specified array should be at least as large as the numbe of tokens in the previous call to <code>chunk</code>. * @param probs An array used to hold the probabilities of the last decoded sequence. */ public void probs(double[] probs) { bestSequence.getProbs(probs); } /** * Returns an array with the probabilities of the last decoded sequence. The * sequence was determined based on the previous call to <code>chunk</code>. * @return An array with the same number of probabilities as tokens were sent to <code>chunk</code> * when it was last called. */ public double[] probs() { return bestSequence.getProbs(); } private static GISModel train(opennlp.maxent.EventStream es, int iterations, int cut) throws java.io.IOException { return opennlp.maxent.GIS.trainModel(iterations, new TwoPassDataIndexer(es, cut)); } /** * Trains the chunker using the specified parameters. <br> * Usage: ChunkerME trainingFile modelFile. <br> * Training file should be one word per line where each line consists of a * space-delimited triple of "word pos outcome". Sentence breaks are indicated by blank lines. * @param args The training file and the model file. * @throws java.io.IOException When the specifed files can not be read. */ public static void main(String[] args) throws java.io.IOException { if (args.length == 0) { System.err.println("Usage: ChunkerME trainingFile modelFile"); System.err.println(); System.err.println("Training file should be one word per line where each line consists of a "); System.err.println("space-delimited triple of \"word pos outcome\". Sentence breaks are indicated by blank lines."); System.exit(1); } java.io.File inFile = new java.io.File(args[0]); java.io.File outFile = new java.io.File(args[1]); GISModel mod; opennlp.maxent.EventStream es = new ChunkerEventStream(new opennlp.maxent.PlainTextByLineDataStream(new java.io.FileReader(inFile))); if (args.length > 3) mod = train(es, Integer.parseInt(args[2]), Integer.parseInt(args[3])); else mod = train(es, 100, 5); System.out.println("Saving the model as: " + args[1]); new opennlp.maxent.io.SuffixSensitiveGISModelWriter(mod, outFile).persist(); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -