⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 defaultchunkercontextgenerator.java

📁 自然语言处理领域的一个开发包
💻 JAVA
字号:
/////////////////////////////////////////////////////////////////////////////////Copyright (C) 2003 Thomas Morton// //This library is free software; you can redistribute it and/or//modify it under the terms of the GNU Lesser General Public//License as published by the Free Software Foundation; either//version 2.1 of the License, or (at your option) any later version.// //This library is distributed in the hope that it will be useful,//but WITHOUT ANY WARRANTY; without even the implied warranty of//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//GNU Lesser General Public License for more details.// //You should have received a copy of the GNU Lesser General Public//License along with this program; if not, write to the Free Software//Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.//////////////////////////////////////////////////////////////////////////////package opennlp.tools.chunker;import java.util.ArrayList;import java.util.List;import opennlp.tools.util.Sequence;/** Features based on chunking model described in Fei Sha and Fernando Pereira. Shallow  *  parsing with conditional random fields. In Proceedings of HLT-NAACL 2003. Association  *  for Computational Linguistics, 2003. * @author Tom Morton  */public class DefaultChunkerContextGenerator implements ChunkerContextGenerator {  /**   * Creates the default context generator a chunker.   */  public DefaultChunkerContextGenerator() {    super();  }    /* inherieted java doc */  public String[] getContext(Object o) {    Object[] data = (Object[]) o;    List outcomes = ((Sequence) data[2]).getOutcomes();    return (getContext(((Integer) data[0]).intValue(), (Object[]) data[1], (String[]) data[3], outcomes.toArray(new String[outcomes.size()])));  }    public String[] getContext(int index, Object[] sequence, String[] priorDecisions, Object[] additionalContext) {    return getContext(index,sequence,(String[]) additionalContext[0],priorDecisions);   }      public String[] getContext(int i, Object[] toks, String[] tags, String[] preds) {    List features = new ArrayList(45);    /** Words in a 5-word window **/    String w_2, w_1, w0, w1, w2;    /** Tags in a 5-word window **/    String t_2, t_1, t0, t1, t2;    /** Previous predictions **/    String p_2, p_1;    if (i < 2) {      w_2 = "w_2=bos";      t_2 = "t_2=bos";      p_2 = "p_2=bos";    }    else {      w_2 = "w_2=" + toks[i - 2];      t_2 = "t_2=" + tags[i - 2];      p_2 = "p_2" + preds[i - 2];    }    if (i < 1) {      w_1 = "w_1=bos";      t_1 = "t_1=bos";      p_1 = "p_1=bos";    }    else {      w_1 = "w_1=" + toks[i - 1];      t_1 = "t_1=" + tags[i - 1];      p_1 = "p_1=" + preds[i - 1];    }    w0 = "w0=" + toks[i];    t0 = "t0=" + tags[i];    if (i + 1 >= toks.length) {      w1 = "w1=eos";      t1 = "t1=eos";    }    else {      w1 = "w1=" + toks[i + 1];      t1 = "t1=" + tags[i + 1];    }    if (i + 2 >= toks.length) {      w2 = "w2=eos";      t2 = "t2=eos";    }    else {      w2 = "w2=" + toks[i + 2];      t2 = "t2=" + tags[i + 2];    }    //add word features    features.add(w_2);    features.add(w_1);    features.add(w0);    features.add(w1);    features.add(w2);    features.add(w_1 + w0);    features.add(w0 + w1);    //add tag features    features.add(t_2);    features.add(t_1);    features.add(t0);    features.add(t1);    features.add(t2);    features.add(t_2 + t_1);    features.add(t_1 + t0);    features.add(t0 + t1);    features.add(t1 + t2);    features.add(t_2 + t_1 + t0);    features.add(t_1 + t0 + t1);    features.add(t0 + t1 + t2);    //add pred tags    features.add(p_2);    features.add(p_1);    features.add(p_2 + p_1);    //add pred and tag    features.add(p_1 + t_2);    features.add(p_1 + t_1);    features.add(p_1 + t0);    features.add(p_1 + t1);    features.add(p_1 + t2);    features.add(p_1 + t_2 + t_1);    features.add(p_1 + t_1 + t0);    features.add(p_1 + t0 + t1);    features.add(p_1 + t1 + t2);    features.add(p_1 + t_2 + t_1 + t0);    features.add(p_1 + t_1 + t0 + t1);    features.add(p_1 + t0 + t1 + t2);    //add pred and word    features.add(p_1 + w_2);    features.add(p_1 + w_1);    features.add(p_1 + w0);    features.add(p_1 + w1);    features.add(p_1 + w2);    features.add(p_1 + w_1 + w0);    features.add(p_1 + w0 + w1);    return ((String[]) features.toArray(new String[features.size()]));  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -